Постройте логическую функцию соответствующую логической схеме. Построение функциональных логических схем по заданным функциям

Пример решение логических задач средствами алгебры логики

Логические схемы

Логическая схема – это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое . Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Две схемы называются равносильными , если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале).

Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам:

  1. составлению функции проводимости по таблице истинности, отражающей эти условия;
  2. упрощению этой функции;
  3. построению соответствующей схемы.

АНАЛИЗ СХЕМЫ сводится к:

  1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.
  2. получению упрощённой формулы.

Задача : Составить таблицу истинности для данной формулы: (x ~ z) | ((x y) ~ (y z)).

Решение : В таблицу истинности данной формулы полезно включить таблицы истинности промежуточных функций:

xyz x ~ z x y y z (x y) ~ (y z) (x~ z)|((x y) ~ (yz)

Методические указания для выполнения практического задания №2. «Алгебра логики». Построение таблиц истинности.

Цель работы : Ознакомиться с основными арифметическими операциями, базовыми логическими элементами (И, И-НЕ, ИЛИ, ИЛИ-НЕ, исключающее ИЛИ) и изучить методы построения на их основе таблиц истинности.

Задание:

1. В приложении 2 выбрать вариант задания и составить таблицу истинности .

2. Выполнить задание, используя пример решение логических задач средствами алгебры логики.

Задача :

Построить логическую схему по заданному булевому выражению:



F =`BA + B`A + C`B.

Решение:

Как правило, построение и расчет любой схемы осуществляется начиная с ее выхода.

Первый этап : выполняется логическое сложение, логическую операцию ИЛИ, считая входными переменными функции`B A, B`A и C`B:

Второй этап : к входам элемента ИЛИ подключаются логические элементы И, входными переменными которых являются уже A, B, C и их инверсии:

Третий этап : для получения инверсий`A и`B на соответствующих входах ставят инверторы:

Данное построение основано на следующей особенности, – поскольку значениями логических функций могут быть только нули и единицы, то любые логические функции могут быть представлены как аргументы других более сложных функций. Таким образом, построение логической схемы осуществляется с выхода ко входу.

Методические указания для выполнения практического задания №3. «Алгебра логики». Построение логических схем

Цель работы : Ознакомиться с основными арифметическими операциями, базовыми логическими элементами (И, И-НЕ, ИЛИ, ИЛИ-НЕ, исключающее ИЛИ) и изучить методы построения на их основе простейших логических схем.

Задание:

1. В приложении 2 выбрать вариант задания и построить логическую схему .

2. Выполнить задание, используя пример построения логических схем.

3. Оформить работу в тетради для практических работ.

4. Результат работы предъявить преподавателю.

5. Защитить выполненную работу у преподавателя.

Приложение 2. Таблица вариантов заданий

Составить таблицу истинности и логическую схему для данных операций
Вариант Операции

4. Индивидуальное задание. Модуль 1. «Построение логических схем по заданным булевым выражениям»

Задания к ИДЗ:

  1. В приложении 3 выбрать вариант индивидуального задания.
  2. Выполнить задание, пользуясь теоретическими сведениями
  3. Проверить логическую схему у тьютора.
  4. Оформить ИДЗ в формате А4, титульный лист по образцу Приложение 4.
  5. Результат работы предъявить преподавателю.
  6. Защитить выполненную работу у преподавателя.

Приложение 3. Таблица вариантов индивидуального задания

Варианты Составить таблицу истинности и логическую схему по формулам

Приложение 4. Титульный лист ИДЗ

Конспект урока
«Построение логических схем с помощью базовых логических элементов»

10 класс

Тип урока: лекция, самостоятельная работа.

Оборудование: проектор, карточки с заданиями.

Формы работы: коллективная, индивидуальная.

Продолжительность урока: 45 мин.

Цели урока:

Образовательные:

    научиться строить логические схемы для логических функций с помощью основных базовых логических элементов;

    научиться выписывать соответствующую логическую функцию из логической схемы.

Воспитательные:

    привитие навыков самостоятельности в работе, воспитание аккуратности, дисциплинированности.

Развивающие:

    развитие внимания, мышления, памяти учащихся.

Ход урока:

1. Организационный момент (1 мин).
2. Проверка пройденного материала (5 мин).

Фронтальный опрос.

    Перечислите основные логические операции.

    Что такое логическое умножение?

    Что такое логическое сложение?

    Что такое инверсия?

    Что такое таблица истинности?

    Что такое сумматор?

    Что такое полусумматор?

3. Изучение нового материала (20 мин).

Дискретный преобразователь, который после обработки входных двоичных сигналов выдает на выходе сигнал, являющийся значением одной из логических операций, называется логическим элементом.
Поскольку любая логическая операция может быть представлена в виде комбинаций трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из «кирпичиков».
Логические элементы компьютера оперируют сигналами, представляющими собой электрические импульсы. Есть импульс – логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.
Преобразование сигнала логическим элементом задается таблицей состояния, которая фактически является таблицей истинности, соответствующей логической функции.
На доске приведены условные обозначения (схемы) базовых логических элементов, реализующих логическое умножение (конъюнктор), логическое сложение (дизъюнктор) и отрицание (инвертор).

Логический элемент «И»:

Логический элемент «ИЛИ»:

Логический элемент «НЕ»:

Устройства компьютера (сумматоры в процессоре, ячейки памяти в оперативной памяти и др.) строятся на основе базовых логических элементов.

Пример 1. построить логическую схему.

Наше построение схемы, мы начнем с логической операции, которая должна выполнятся последней. В нашем случае такой операцией является логическое сложение, следовательно, на выходе логической схемы должен быть дизъюнктор. На него сигналы будут подаваться с двух конъюнкторов, на которые в свою очередь подаются один входной сигнал нормальный и один инвертированный (с инверторов).

Пример 2. Выписать из логической схемы соответствующую ей логическую формулу:

Решение:

4. Закрепление нового материала (15 мин).

Для закрепления материала учащимся раздаются карточки на два варианта для самостоятельной работы.

Вариант 1.


Решение:

Решение:

Вариант 2.

1. По заданной логической функции построить логическую схему и таблицу истинности.
Решение:

2. Выписать из логической схемы соответствующую ей логическую формулу:

Решение:

5. Постановка домашнего задания. (3 мин).

По заданной логической функции построить логическую схему и таблицу истинности.

6. Подведение итогов урока. (1 мин).

Проанализировать, дать оценку успешности достижения цели и наметить перспективу на будущее. Оценка работы класса и отдельных учащихся, аргументация выставления отметок, замечания по уроку.

Литература, эор:

    Информатика и информационные технологии. Учебник для 10-11 классов, Н. Д. Угринович – 2007г.;

    Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений, Н. Д. Угринович, Л. Л. Босова, Н. И. Михайлова – 2007г.

При построении отдельных узлов компьютера довольно часто необходимо решить проблему построения функциональных логических схем по заданным функциям. Для этого достаточно условиться, что истинное высказывание соответствует тому, что цепь проводит ток, а ложное – цепь разорвана.

Логические операции конъюнкции, дизъюнкции, инверсии реализуются в ЭВМ с помощью следующих элементарных схем.

Конъюнкция – логический элемент «и»:

Этот элемент выполняет операцию логического умножения (конъюнкция): f = x 1 Ù x 2 Ùx 3 Ù…Ùx n ; и имеет n входов и один выход.

Дизъюнкция – логический элемент «или»:

Этот элемент выполняет операцию логического сложения (дизъюнкция): f = x 1 Ú x 2 Úx 3 Ú…Úx n ; и имеет n входов и один выход.

Инверсия – логический элемент «не»:

Этот элемент выполняет операцию логического отрицания (инверсии): f = ; и имеет один вход и один выход.

Сложные функциональные схемы можно конструировать из основных логических элементов, используя основные законы булевой алгебры

Пример выполнения контрольного задания

Задание:

Дана функция,

1. Составить функциональную логическую схему по данной функции.

2. Упростить логическую функцию (используя законы булевой алгебры) и выполнить проверку преобразования таблицей истинности.

3. Составить функциональную логическую схему по упрощенной функции.

Выполнение:

1. Составим таблицу истинности для заданной функции:

x y

2. Составим функциональную логическую схему по заданной функции:

3. Упростим заданную функцию, используя законы булевой алгебры:

а) по закону де Моргана – 9

б) по закону идемпотентности - 13

в) закон отрицание отрицания – 1

г) закон дистрибутивности – 6

д) свойства 1 и 0 – 19

е) свойства 1 и 0 – 16

Таким образом, упрощенная функция имеет вид:

4. Составим таблицу истинности для упрощенной функции:

x y

Таким образом, сравнивая таблицы истинности для исходной и упрощенной функций (их последние столбцы) делаем вывод о правильности проведенных преобразований.

5. Составим функциональную логическую схему по упрощенной функции:

Задание для выполнения контрольной работы

Дана функция f(x,y), номер функции в таблице соответствует порядковому номеру студента по списку.

4. Составить функциональную логическую схему по данной функции.

5. Упростить логическую функцию (используя законы булевой алгебры) и выполнить проверку преобразования таблицей истинности.

средняя общеобразовательная школа №22 г. Владикавказа

Конспект урока по информатике

на тему:

«Основы логики:

построение логических схем»

учитель информатики

Гресева Т.В.

2015 г.

Конспект урока на тему: «Основы логики: построение логических схем».

Данный урок четвёртый в рамках темы «Основы логики». Предполагается, что обучающиеся уже знакомы с основными определениями и логическими операциями, умеют строить таблицы истинности для простых и сложных логических выражений.

Цели урока:

    создание условий для формирования знаний по построению логических схем для сложных выражений;

Задачи:

    изучить принципы построения логических схем для сложных выражений;

    способствовать развитию логического мышления;

    сформировать у учащихся представления об устройствах элементной базы компьютера.

Тип урока:

    урок совершенствования знаний, умений и навыков;

    целевого применения усвоенного.

Вид урока: комбинированный.

Используемое оборудование:

    компьютер;

    приложение Microsoft Office PowerPoint 2003 ивыше;

    мультимедиа проектор;

    интерактивная доска (по возможности).

План урока:

    Организационный момент (1 мин)

    Опрос по материалу прошлого урока (4 мин)

    Представление нового материала (20 мин)

    Выполнение практического задания (12 мин)

    Подведение итогов урока. Задание на дом (3 мин)

Ход урока:

    1. Организационный момент.

Приветствие учащихся. Проверка присутствующих. Настрой на урок.

    1. Опрос по материалу прошлого урока.

На прошлом уроке мы с вами познакомились с основными логическими операциями. Обучающимся предлагается ответить на следующие вопросы:

    1. Представление нового материала.

Над возможностями применения логики в технике ученые и инженеры задумывались уже давно. Например, голландский физик Пауль Эренфест (1880 - 1933) говорил «...Пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое «или-или», воплощенное в эбоните и латуни; все вместе – система чисто качественных... «посылок», ничего не оставляющая желать в отношении сложности и запутанности... правда ли, что, несмотря на существование алгебры логики, своего рода «алгебра распределительных схем» должна считаться утопией?». Созданная позднее М. А. Гавриловым (1903 – 1979) теория релейно-контактных схем показала, что это вовсе не утопия.

Посмотрим на микросхему.

На первый взгляд ничего того, что нас удивило бы, мы не видим. Но если рассматривать ее при сильном увеличении она поразит нас своей стройной архитектурой.

Чтобы понять, как она работает, вспомним, что компьютер работает на электричестве, то есть любая информация представлена в компьютере в виде электрических импульсов. Поговорим о них.

С точки зрения логики электрический ток либо течет, либо не течет; электрический импульс есть или его нет; электрическое напряжение есть или его нет... В связи с этим поговорим о различных вариантах управления включением и выключением обыкновенной лампочки (лампочка также работает на электричестве). Для этого рассмотрим электрические контактные схемы, реализующие логические операции.

Виды логических элементов (вентилей):

1. Конъюнктор (И):

2. Дизъюнктор (ИЛИ):

3. Инвертор НЕ:

Недостатками контактных схем являлись их низкая надежность и быстродействие, большие размеры и потребление энергии. Поэтому попытка использовать такие схемы в ЭВМ не оправдала себя. Появление вакуумных и полупроводниковых приборов позволило создавать логические элементы с быстродействием от 1 миллиона переключений в секунду. Именно такие электронные схемы нашли свое применение к качестве элементной базы ЭВМ. Вся теория, изложенная для контактных схем, была перенесена на электронные схемы.

Логический элемент (вентиль) - это электронное устройство, реализующее одну из логических функций.

Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Логическая схема - это электронное устройство, которое реализует любую логическую функцию, описывающую работу устройств компьютера.

Физически каждый логический элемент представляет собой электронную схему, в которой на вход подаются некоторые сигналы, кодирующие 0 либо 1, а с выхода снимается также сигнал, соответствующий 0 или 1 в зависимости от типа логического элемента.

Обработка любой информации на компьютере сводится к выполнению процессором различных арифметических и логических операций. Для этого в состав процессора входит так называемое арифметико-логическое устройство . Оно состоит из ряда устройств, построенных на рассмотренных выше логических элементах.

Важнейшими из таких устройств являются регистры и сумматоры .

Регистр представляет собой электронный узел, предназначенный для хранения многоразрядного двоичного числового кода. Упрощенно можно представить регистр как совокупность ячеек, в каждой из которых может быть записано одно из двух значений: 0 или 1, то есть один разряд двоичного числа. Такая ячейка, называемая триггером , представляет собой некоторую логическую схему, составленную из рассмотренных выше логических элементов.

Под воздействием сигналов, поступающих на вход триггера, он переходит в одно из двух возможных устойчивых состояний, при которых на выходе будет выдаваться сигнал, кодирующий значение 0 или 1. Для хранения в регистре одного байта информации необходимо 8 триггеров.

Сумматор - это электронная схема, предназначенная для выполнения операции суммирования двоичных числовых кодов.

Правила построения логических схем:

1) Определить число логических переменных.

2) Определить количество базовых логических операций и их порядок.
3) Изобразить для каждой логической операции соответствующий ей логический элемент.
4) Соединить логические элементы в порядке выполнения логических операций.

Построим логическую схему для логического выражения:


Для этого нам потребуется 3 логических элемента:


    1. Выполнение практического задания.

Задание №1

Построить логическую схему для логического выражения и выяснить, при каких входных сигналах на выходе схемы не будет напряжения?

Задание №2

По построенной логической схеме составить логическое выражение

    1. Подведение итогов урока. Задание на дом.

Ответы на вопросы учащихся. Подведение итога урока. Выставление оценок.

Домашнее задание (слайд 18).

В цифровой схемотехнике цифровой сигнал - это сигнал, который может принимать два значения, рассматриваемые как логическая "1" и логический "0".

Логические схемы могут содержать до 100 миллионов входов и такие гигантские схемы существуют. Представьте себе, что булева функция (уравнение) такой схемы была потеряна. Как восстановить её с наименьшими потерями времени и без ошибок? Наиболее продуктивный способ - разбить схему на ярусы. При таком способе записывается выходная функция каждого элемента в предыдущем ярусе и подставляется на соответствующий вход на следующем ярусе. Этот способ анализа логических схем со всеми нюансами мы сегодня и рассмотрим.

Логические схемы реализуются на логических элементах: "НЕ", "И", "ИЛИ", "И-НЕ", "ИЛИ-НЕ", "Исключающее ИЛИ" и "Эквивалентность". Первые три логических элемента позволяют реализовать любую, сколь угодно сложную логическую функцию в булевом базисе . Мы будем решать задачи на логические схемы, реализованные именно в булевом базисе.

Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах (для увеличения можно нажать на рисунок левой кнопкой мыши).

На этом уроке будем решать задачи на логические схемы, на которых логические элементы обозначены в стандарте ГОСТ.

Задачи на логические схемы бывают двух видов: задача синтеза логических схемы и задачи анализа логических схем. Мы начнём с задачи второго типа, так как в таком порядке удаётся быстрее научиться читать логические схемы.

Чаще всего в связи с построением логических схем рассматриваются функции алгебры логики:

  • трёх переменных (будут рассмотрены в задачах анализа и в одной задаче синтеза);
  • четырёх переменных (в задачах синтеза, то есть в двух последних параграфах).

Рассмотрим построение (синтез) логических схем

  • в булевом базисе "И", "ИЛИ", "НЕ" (в предпоследнем параграфе);
  • в также распространённых базисах "И-НЕ" и "ИЛИ-НЕ" (в последнем параграфе).

Задача анализа логических схем

Задача анализа заключается в определении функции f , реализуемой заданной логической схемой. При решении такой задачи удобно придерживаться следующей последовательности действий.

  1. Логическая схема разбивается на ярусы. Ярусам присваиваются последовательные номера.
  2. Выводы каждого логического элемента обозначаются названием искомой функции, снабжённым цифровым индексом, где первая цифра - номер яруса, а остальные цифры - порядковый номер элемента в ярусе.
  3. Для каждого элемента записывается аналитическое выражение, связывающее его выходную функцию с входными переменными. Выражение определяется логической функцией, реализуемой данным логическим элементом.
  4. Производится подстановка одних выходных функций через другие, пока не получится булева функция, выраженная через входные переменные.

Пример 1.

Решение. Разбиваем логическую схему на ярусы, что уже показано на рисунке. Запишем все функции, начиная с 1-го яруса:

x , y , z :

x y z f
1 1 1 0 1 1 1 1
1 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0

Пример 2. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Пример 3. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.


Продолжаем искать булеву функцию логической схемы вместе

Пример 4. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x , y , z :

В итоге получим функцию, которую реализует на выходе логическая схема:

.

Таблица истинности для данной логической схемы:

x y z f
1 1 1 0 1 1
1 1 0 0 1 1
1 0 1 1 0 1
1 0 0 0 0 0
0 1 1 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 0 1 1

Пример 5. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Структура данной логической схемы, в отличие от предыдущих примеров, имеет 5 ярусов, а не 4. Но одна входная переменная - самая нижняя - пробегает все ярусы и напрямую входит в логический элемент в первом ярусе. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x , y , z :

В итоге получим функцию, которую реализует на выходе логическая схема:

.

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1 1
1 1 0 1 1 1
1 0 1 1 0 1
1 0 0 1 0 1
0 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 0 1
0 0 0 1 0 1

Задача синтеза логических схем в булевом базисе

Разработка логической схемы по её аналитическому описанию имеет название задачи синтеза логической схемы.

Каждой дизъюнкции (логической сумме) соответствует элемент "ИЛИ", число входов которого определяется количеством переменных в дизъюнкции. Каждой конъюнкции (логическому произведению) соответствует элемент "И", число входов которого определяется количеством переменных в конъюнкции. Каждому отрицанию (инверсии) соответствует элемент "НЕ".

Часто разработка логической схемы начинается с определения логической функции, которую должна реализовать логическая схемы. В этом случае дана только таблица истинности логической схемы. Мы разберём именно такой пример, то есть, решим задачу, полностью обратную рассмотренной выше задаче анализа логических схем.

Пример 6. Построить логическую схему, реализующую функцию с данной таблицей истинности.