Идентификация математической модели тяговой аккумуляторной батареи гибридного автомобиля. с.а

Сегодня в России наблюдается рост производителей автономных электротранспортных средств малой и средней мощности. К таковым относятся не только электромобили и городской транспорт. Электротяга успешно используется для реализации погрузчиков, складской и сельскохозяйственной техники, в рыболовной и охотничьей сферах для бесшумной охоты и рыбалки (багги, лодки, квадроциклы), а также в спортивной и развлекательной сферах.

Производители большинства данных транспортных средств используют электропривод средней мощности и литиевые аккумуляторы в качестве источников питания. Для обеспечения корректной и безопасной работы такой системы требуется контроль заряда каждой ячейки аккумуляторной батареи. Большинство производителей использует для этого готовые системы контроля (BMS ) зарубежного производства (КНР, США, Германия).

Наиболее эффективные литиевые источники питания, широко используемые в электротранспорте, по природе своей выдают рабочее напряжение порядка 3,2…4 В. Для обеспечения работы электропривода на большем напряжении их соединяют последовательно. При такой конфигурации в батарее, в случае изменения параметров одной или нескольких ячеек, может возникать дисбаланс – перезаряд, переразряд ячеек, достигающий в худшем случае 30%. Такой режим существенно (в разы) снижает ресурс аккумуляторной батареи.

Система BMS позволяет осуществлять контроль и балансировку заряда последовательно и параллельно-последовательно соединенных аккумуляторных ячеек батареи автономного электротранспортного средства.

Можно выделить 2 основных типа балансировок аккумуляторных ячеек: активная и пассивная.

При достижении порового напряжения система пассивной балансировки начинает рассеивать энергию на резисторе в виде тепла, при этом процесс заряда прекращается, далее достигнув напряжения нижнего порога система вновь начинает заряд всей батареи. Процесс заряда прекращается, когда напряжение всех ячеек находится в требуемом диапазоне.

Пассивная балансировка – система однонаправленная, она может только поглощать заряд ячейки. Активная система балансировки использует двунаправленные преобразователи постоянного тока, тем самым позволяя из более заряженной ячейки направлять энергию в более разряженную ячейку под управлением микроконтроллера BMS . Матричный коммутатор обеспечивает маршрутизацию зарядов в ячейку или из нее. Коммутатор подключен к DC-DC преобразователю, который регулирует ток, он может быть и положительный, когда ячейку нужно зарядить, отрицательный, когда необходимо разрядить. Вместо использования резистора и рассеивания тепла, величина тока перетекающего при зарядке-разрядке контролируется алгоритмом балансировки нагрузки.

Наиболее широкое распространение получили аналоговые системы пассивной балансировки. На рисунке приведена типовая система и её характеристики.

Нами была разработана математическая модель аккумуляторной батареи, состоящей из 16 LiFePO 4 ячеек, контроль заряда которой осуществлялся посредством пассивной BMS . Математическая модель аккумуляторной LiFePO 4 ячейки в системе Matlab Simulink учитывает нелинейные зарядочные и разрядочные характеристики батареи, соответствующие данному типу ячеек, внутреннее сопротивление, а также текущий уровень максимальной емкости, изменяющийся во время жизненного цикла ячейки.

К каждой из ячеек параллельно был подключен пассивный балансир. Для управления процессом заряда и балансировки был последовательно включен ключ, открытие и закрытие которого осуществлялось по команде, поступающей от BMS . Исследование проводилось для заключительного этапа заряда аккумуляторной батареи от идеального источника напряжения.

Осциллограммы процесса заряда АКБ, состоящей из 16 LiFePO4 ячеек, одна из которых была «повреждена» и имела меньшую емкость

На рисунке приведен случай, когда у одной из ячеек были изменены параметры, в частности, моделировался случай потери емкости и увеличения внутреннего сопротивления, что может случиться в реальной жизни, например, в результате удара или вследствие перегрева.

Поврежденная ячейка заряжается быстрее и первой достигает требуемого напряжения. Однако, дальнейший заряд ее не происходит. По выше описанному принципу начинает работать балансир. Остальные ячейки, обозначенные зеленым цветом в момент остановки процесса заряда сохраняют текущий уровень емкости, а в момент его возобновления продолжают заряжаться.

Когда уровень напряжения всех ячеек достигает требуемого диапазона, процесс заряда останавливается

Введение.

Литий-ионные аккумуляторы являются стандартом де-факто в области источников питания для электромобилей, систем бесперебойного питания, мобильных устройств и гаджетов . Другой пример использования литий-ионных аккумуляторов – накопители для возобновляемых источников энергии (главным образом, солнечные батареи и ветрогенераторы). Так в 2011 году в Китае был установлен накопитель на литий-ионных аккумуляторах общей емкостью 36 МВтч, способный отдавать в сеть 6 МВт электрической мощности в течение 6 часов . Примером противоположного масштаба являются литий-ионные батарей для имплантируемых кардиостимуляторов, ток нагрузки которых составляет порядка 10 мкА . Сам диапазон емкости единичного коммерчески выпускаемого литий-ионного элемента давно перешагнул отметку 500 Ач .

Использование литий-ионных аккумуляторов предполагает соблюдение параметров разряда и заряда батареи, в противном случае может произойти необратимая деградация емкости, выход из строя и даже возгорание батареи из-за саморазогрева. Поэтому литий-ионные аккумуляторы всегда применяются вместе с системой контроля и управления – СКУ или BMS (battery management system) . Система управления батареей выполняет защитные функции, контролируя температуру, ток заряда-разряда и напряжение, таким образом предотвращая слишком глубокий разряд, перезаряд и перегрев. Также BMS осуществляет контроль состояния батареи с помощью оценки степени заряда (State of Charge, SOC) и состояния годности (State of Health, SOH). Интеллектуальный BMS является необходимым в практически любом применении литий-ионных батарей, предоставляя информацию сколько устройство будет работать до необходимости подзарядки (значение SOC) и когда следует заменить батарею из-за потери емкости (значение SOH).

В настоящей работе мы сосредоточимся на моделях для оценки состояния SOC и SOH, пригодных для реализации в реальном времени в системах управления батареями. К сожалению, в русскоязычной научной литературе практически отсутствуют какие-либо публикации, рассматривающие подобные вопросы именно для литий-ионных аккумуляторов. Поэтому в этой статье мы попробуем восполнить данный пробел.

1. Предварительные сведения.

1.1. Литий-ионная батарея – элементарное описание.

Схематически процессы разряда и заряда литий-ионного аккумулятора можно представить на рисунке 1 .

Рисунок 1. Элементарное представление процессов в литий-ионном аккумуляторе.

Батарея состоит из углеродного анода и катода из оксида металла, содержащего также литий (например, LiMn2O4). Положительные ионы лития Li+ мигрируют между анодом и катодом через органический электролит. Важным моментом является то, что литий никогда не возникает в свободном металлическом состоянии – происходит только обмен его ионами между катодом и анодом. Поэтому такие аккумуляторы получили название «литий-ионные»

При заряде литий-ионного аккумулятора происходит деинтеркаляция (изъятие) лития из литийсодержащего катода и интеркаляция (внедрение) ионов лития в углеродный материал анода. При разряде аккумулятора процессы идут в обратном направлении: отрицательный заряд переносится потоком электронов с катода на анод, а ионы лития двигаются в обратном направлении – с анода на катод.

Более подробное описание процессов мы рассмотрим при моделировании аккумулятора на электрохимическом уровне.

1.2. Системный уровень описания батареи.

Со схемной точки зрения, батарея представляется двухполюсником. В данной работе будет использоваться ее описание в виде черного ящика, как системы с одним входом (ток в цепи ) и напряжение на клеммах батареи .

Напряжение холостого хода (open circuit voltage, OCV) – напряжение на клеммах батареи при отсутствии отбора тока .

Важнейшим параметром является емкость батареи , определяемая как максимальное количество электрической энергии (в Ач), которое батарея отдает в нагрузку с момента полного заряда до состояния разряда, не приводящего к преждевременной деградации батареи.

Как было сказано ранее, основные функции интеллектуального BMS – это оценка SOC и SOH.

Состояние заряда батареи (state of charge, SOC) – показатель, характеризующий степень заряженности батареи: 100% – полный заряд, 0% – полный разряд. Эквивалентный показатель глубина разряда (deepth of discharge, DoD) – . Обычно SOC измеряется в процентах, но в настоящей работе мы будем считать, что . Формально, SOC выражается как , где – текущий заряд в батареи.

Состояние годности батареи (state of health, SOH) – качественный показатель, характеризующий текущую степень деградации емкости батареи. Результатом оценки SOH является не численное значение, а ответ на вопрос: «необходимо ли заменить батарею в данный момент?». В настоящее время нет стандарта, регламентирующего на основе каких параметров батареи должен вычисляться SOH. Разные производители BMS используют для этого различные показатели, например, сравнение исходной и действительной емкости батареи или внутреннего сопротивления.

2. Модели для определения состояния заряда.

Определение состояния заряда SOC является задачей наблюдения за скрытым состояниям системы по имеющейся модели процесса и измеряемому выходному отклику от входного воздействия . Модели, предназначенные для использования в составе систем управления батареями для определения SOC, могут быть классифицированы на две большие группы :

Эмпирические модели, реплицирующие поведение батареи с позиции «черного ящика»;

Физические модели, моделирующие внутренние электрохимические процессы в батарее.

2.1 Эмпирические модели.

Класс эмпирических моделей включает в себя ряд различных подходов, общими чертами являются существенное упрощенное моделирование физических процессов в батарее. Эмпирические модели являются стандартом при реализации BMS, поскольку обладают с одной стороны достаточной простотой для реализации, а с другой – приемлемой точностью для оценки SOC , . Количественное сравнение 28 разных эмпирических моделей содержится в работе .

Основной вид эмпирических моделей – схемы замещения.

Исходной предпосылкой к эмпирическому моделированию является наблюдение, что динамика аккумуляторной батареи может быть разделена на две части ,:

Медленная динамика, связанная с зарядом и разрядом батареи,

Быстрая динамика, связанная с внутренним импедансом батареи: активным сопротивлением электролита и электродов, а также с электрохимическими емкостями.

Процессы старения и деградации емкости моделируются как нестационарность параметров системы.

Фактически, медленная динамика сводится к моделированию влияния SOC на электрические характеристики аккумулятора. Замечено, что напряжение холостого хода (OCV) является достаточно однозначной функцией от состояния заряда (SOC или DoD):

и слабо подвержено температурной вариации (кроме областей, где батарея почти полностью заряжена или разряжена), а также слабо меняется при старении батареи (если считать когда батарея заряжена до своей текущей с учетом деградации емкости) .

Типичные кривые зависимости для литий-ионных аккумуляторов с разной химией показаны на рисунке 2.


Рисунок 2. Типичные зависимости напряжения холостого хода от состояния заряда.

Аппроксимация зависимости может быть выполнена различными способами, в том числе кусочно-линейно или полиномиально. Одним из классических вариантов аппроксимации (1) является уравнение Шеферда (Shepherd model) , модификация которого для литий-ионного аккумулятора имеет вид :

где коэффициенты вычисляются на основе характерных точек кривой разряда батареи, которая обычно приводится в технической документации, а – полный заряд, прошедший из или в батарею за время : .

В работе , например, используется следующее выражение для аппроксимации :

Различные варианты параметризации систематически рассмотрены в работе .

Для получения полной модели батареи уравнение (2) может быть дополнено также слагаемыми, зависящими от тока батареи, например как это реализовано в системе Simulink в блоке Battery из SimPowerSystem (, ).

2.1.2 Внутренний импеданс батареи.

Вторая часть эмпирической модели – описание внутреннего импеданса, отвечающего за вольт-амперные характеристики и быструю динамику.

Самым простым вариантом моделирование является включенное последовательно с регулируемым источником ЭДС активное сопротивление (рисунок 3). Такая схема замещения моделирует внутреннее сопротивление батареи, создаваемое материалами электродов и электролита, на котором наблюдается омическое падение напряжения и выделение тепла.


Рисунок 3. Элементарная схема замещения батареи.

Для моделирования переходных процессов в батарее такая простейшая схема замещения должна быть дополнена реактивными элементами. Таким образом, последовательно с оказывается включено комплексное сопротивление с импедансом .

Обычно выделяют следующие электрохимические явления, существенно влияющие на динамику электрических переходных процессов (, ):

Классический двойной электрический слой в контакте электрод-электролит (Double-Layer)

Образование пассивной плёнки (solid-electrolyte interface, SEI) на электродах.

В результате этих факторов, внутри литий-ионного аккумулятора возникают электрохимические распределенные конденсаторы. Исследование импеданса батареи осуществляется с помощью электрохимической импедансной спектроскопии (Electrochemical Impedance Spectroscopy, EIS) -.

Предложено достаточно большое количество эквивалентных схем -, начиная от простых, содержащих несколько реактивных элементов, заканчивая детальным моделированием электрохимических явлений с помощью большого числа RC-цепочек , и даже нелинейных элементов .

Практически хорошо зарекомендовавший вариант (рисунок 4) эквивалентной схемы основан на последовательном соединении активного внутреннего сопротивления и двух RC-цепочек, моделирующих процессы поляризации с образованием объемных емкостей:

Электрохимическая емкость двойного слоя , влияние которой наблюдается на более высоких частотах,

Емкость , связанная с интеркаляцией и массообменом лития, доминирующая на низких частотах.


Рисунок 4. Схема замещения для динамической модели батареи второго порядка.

Таким образом, представленная на рисунке 4 динамическая модель второго порядка в пространстве состояний записывается в виде:

где , а параметры подбираются на основе экспериментальных данных, снятых с конкретного типа батареи.

В действительности, импеданс батареи является функцией от температуры и SOC, а в долгосрочном масштабе времени – также меняется при старении батареи.

Внутреннее активное сопротивление уменьшается при повышении температуры, но в пределах диапазона 25-40°C, оно остается достаточно стабильным . Эксперименты, проведенные в с полимерными литий-ионными аккумуляторами, показали, что параметры схемы замещения остаются постоянным при SOC больше 20%. При меньших значениях SOC происходит экспоненциальное увеличение сопротивлений и экспоненциальное уменьшение емкостей .

2.1.3 Моделирование состояния заряда.

Поскольку величина SOC изменяется в процессе заряда и разряда батареи, то естественно рассматривать SOC как еще одно состояние системы, добавив в схему замещения фрагмент для его моделирования.

Полная схема замещения представлена на рисунке 5. В схему добавлена изолированная цепь с управляемым источником током, обеспечивающим ток через и , равный току в цепи батареи . Таким образом осуществляется разряд и заряд емкости , моделирующей емкость батареи. Напряжение на емкости численно равно SOC, . Значение емкости определяется следующим образом :

где – полная емкость аккумулятора в Ач, – корректирующий множитель для учета зависимости емкости батареи от температуры , – корректирующий множитель для моделирования процесса старения ( – число циклов заряда-разряда).


Рисунок 5. Полная схема замещения для динамической модели второго порядка.

Сопротивление моделирует саморазряд батареи.

С учетом введенного фрагмента схемы, модель батареи в пространстве состояний дополняется еще одним уравнением для переменной :

Собственно задача определения SOC сводится к синтезу наблюдателя для модели (3)-(4).

2.2 Физические модели.

Некоторые исследователи предлагают использовать физические модели для предсказания SOC и SOH. Данный класс моделей основан на использовании уравнений, описывающих электрохимические процессы в батарее.
Главное преимущество такого подхода достаточно очевидно – достигается высокая точность моделирования за счет перехода с эмпирического на физический уровень описания модели. Недостатками являются высокая вычислительная сложность модели и большое количество параметров, подлежащих идентификации из экспериментальных данных. Несмотря на это, физические модели представляют достаточный интерес для будущих поколений систем управления батареями.

В литературе представлены два класса физических моделей:

Одночастичная модель (single particle model) -,

Одномерная пространственная модель (1D-spatial model) .

Одночастичная модель основана на допущении, что каждый из электродов литий-ионного элемента может рассматриваться как одна сферическая частица достаточно большого радиуса (чтобы ее площадь поверхности соответствовала площади пористого катода или анода батареи). Изменение концентрации и потенциала в электролите игнорируется, как и температурные эффекты.

Одномерная пространственная модель является дальнейшим развитием одночастичной модели, в которой каждый из электродов моделируется в виде множества пересекающихся сфер с центрами на одной линии. Такой подход позволяет более точно описать процесс интеркаляции (диффузии) ионов лития в пористые электроды батареи.

Заметим, что даже такие приближенные физические модели литий-ионных батарей основаны на уравнениях в частных производных и синтез наблюдателей для подобного рода объектов представляет собой отдельную нетривиальную задачу.

2.2.1 Одночастичная модель.

Одночастичная модель основана на моделировании следующих явлений в батарее: диффузия ионов лития в электроды и электрохимическая кинетика потока ионов. Процессы в электролите (жидкой фазе) представляются в виде постоянной проводимости и фактически не моделируются. Схематическая структура батареи в одночастичной модели показана на рисунке 6. Далее мы кратко воспроизведем основные составляющие модели. Все уравнения предполагаются одинаково удовлетворяющие как условиям реакции на аноде, так и в равной степени на катоде (с соответствующими параметрами).


Рисунок 6. Схематическое представление аккумулятора в одночастичной модели.

Интеркаляция лития в электроды моделируется как диффузия, описываемая законом Фика:

где – концентрация ионов лития в электродах (твердой фазе), – коэффициент диффузии.

Это уравнение может быть переписано в сферических координатах

с граничными условиями

Молярные потоки диффузии могут быть выражены как плотность тока через поверхность электродов:

где – постоянная Фарадея, – эффективная площадь поверхности каждого электрода.

Для оценки состояния заряда аккумулятора, удобно перейти от локальных концентраций к усредненным по всему объему электродов – :

Непосредственные вычисления показывают , что производная по времени находится как

где – коэффициент пропорциональности, – ток батареи.

Электрохимическая кинетика моделируется с помощью уравнения Батлера-Фольмера (Butler-Volmer equation) для молярного потока ионов лития:

в котором перенапряжения могут быть выражены следующим образом

где – потенциалы положительного и отрицательного электродов, – функция от концентрации ионов лития на поверхности электродов, – сопротивление электролита (жидкой фазы) и пассивной пленки на электроде, – универсальная газовая постоянная, – температура батареи.

Уравнение (7) может быть решено относительно перенапряжения с учетом, что потоки выражаются через ток батареи с помощью (5):

где – константы, выражающие плотность обменного тока.

Заметим, что напряжение на контактах батареи равно разности потенциалов , при этом потенциалы могут быть выражены через (8) с помощью подстановки (9). Отсюда, получаем искомое

Уравнения (6) и (10) составляют электрохимическую одночастичную модель литий-ионного аккумулятора.

2.2.2 Связь между одночастичной моделью и схемой замещения.

Концентрации для положительного электрода и отрицательного связаны друг с другом из уравнения (6): при увеличении , концентрация пропорционально уменьшается, и наоборот. Очевидно, что состояние заряда пропорционально концентрации . Тогда можно ввести в рассмотрение величину как состояние системы, при этом концентрации и будут линейно зависеть от : , .

Отсюда можно записать следующее уравнение для в одночастичной модели

где – некоторая положительная константа.

Слагаемое в (10), исходя из введенного состояния , от которого линейно зависят от концентрации и , может быть представлено в виде некоторой функции . В работе предложена следующая аппроксимация для :

Оставшаяся часть (10) представляет собой функцию от тока , для которой в предложена такая параметризация:

где – постоянные коэффициенты, идентифицируемые по экспериментальным данным.

Модель в пространстве состояния окончательно получается в виде:

(12)

Сопоставляя (4) и (11), достаточно очевидно, что уравнение состояния заряда в одночастичной модели (11) полностью аналогично представлению схемой замещения (4), при этом саморазряд батареи не моделируется. Из уравнения в (12) следует, что функции соответствует функция для напряжения холостого хода в схеме замещения. Но при этом в одночастичной модели существует дополнительный нелинейный элемент с падением напряжения , включенный последовательно с внутренним активным сопротивлением . В отличие от эмпирического представления схемой замещения, электрохимическая емкость двойного электрического слоя не моделируется в одночастичной модели.

Сама электрохимическая одночастичная модель может быть представлена в виде схемы замещения, показанной на рисунке 7.


Рисунок 7. Эквивалентная схема замещения для одночастичной модели.

Заключение.

В настоящей работе дан обзор двух вариантов моделей литий-ионных аккумуляторов для систем управления батареями. Показано, что эмпирическая модель на основе схемы замещения является самой распространенной в литературе, простой для реализации и гибкой с точки зрения масштабирования для моделирования специальных явлений в аккумуляторе. Параметры модели являются нестационарными, подверженными как процессу старению батареи, так и вариации от состояния заряда и температуры. На основе анализа последних публикаций сделан вывод, что перспективным направлением совершенствования моделей для нового поколения систем управления батарей является физические модели, количественно описывающие электрохимические явления в аккумуляторе. Показано, что одночастичная электрохимическая модель может быть представлена в виде схемы замещения, имеющей сходство с эмпирической моделью.


Библиографический список
  1. Ramadesigan V. et al. Modeling and simulation of lithium-ion batteries from a systems engineering perspective //Journal of The Electrochemical Society. – 2012. – Т. 159. – №. 3. – С. R31-R45
  2. Гаранжа A. В Китае изготовлена самая большая в мире аккумуляторная батарея [Электронный ресурс] / A. Гаранжа – Режим доступа: http://www.liotech.ru/sectornews_207_503 – Загл. с экрана.
  3. Axcom Battery Technology GmbH, CNFJ-500 2V/500Ah product specification [Электронный ресурс] – Режим доступа: http://www.axcom-battery-technology.de/uploads/media/Lead_Crystal_Battery_CY2-500.pdf – Загл. с экрана
  4. Pistoia G. (ed.). Lithium-Ion Batteries: Advances and Applications. – Newnes, 2013. – 634 p.
  5. Lithium Ion Rechargeable Batteries: Technical Handbook, Sony Corporation [Электронный ресурс] – Режим доступа: http://www.sony.com.cn/products/ed/battery/download.pdf – Загл. с экрана.
  6. Выравнивание параметров секций аккумулятора обеспечивает дополнительное время работы и увеличивает срок службы аккумуляторных батарей [Электронный ресурс] – Режим доступа: http://www.scanti.ru/bulleten.php?v=211&p=44 – Загл. с экрана
  7. Rahimi-Eichi H., Ojha U., Baronti F., Chow M. Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles // Industrial Electronics Magazine, IEEE — June 2013. — vol.7, no.2, — pp.4-16
  8. Chen M., Rincon-Mora G. A. Accurate electrical battery model capable of predicting runtime and IV performance //Energy conversion, ieee transactions on. — 2006. — Т. 21. — №. 2. — С. 504-511.
  9. V. Pop, H.J. Bergveld, D. Danilov, P.P.L. Regtien, P.H.L. Notten, Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications. ISBN: 978-1-4020-6944-4, In: Philips Research Book Series, vol. 9, Springer, 2008. pp. 24?37.
  10. Melentjev S., Lebedev D. Overview of Simplified Mathematical Models of Batteries. // 13th International Symposium “Topical problems of education in the field of electrical and power engineering”. — Doctoral school of energy and geotechnology: Parnu, Estonia, January 14-19, 2013. — pp. 231-235
  11. Tremblay O., Dessaint L. A. Experimental validation of a battery dynamic model for EV applications // World Electric Vehicle Journal. — 2009. — Т. 3. — №. 1. — С. 1-10.
  12. Боченин В.А., Зайченко Т.Н. Исследование и разработка модели Li-Ion аккумулятора // Научная сессия ТУСУР–2012: Материалы Всероссийской научно-технической конференции студентов, аспирантов и молодых ученых, Томск, 16–18 мая 2012 г. – Томск: В-Спектр, 2012 – Том 2. – с 174-177.
  13. Weng C., Sun J., Peng H. An Open-Circuit-Voltage Model of Lithium-Ion Batteries for Effective Incremental Capacity Analysis //ASME 2013 Dynamic Systems and Control Conference. – American Society of Mechanical Engineers, 2013. DSCC2013-3979 – С. 1-8.
  14. Tang X. et al. Li-ion battery parameter estimation for state of charge //American Control Conference (ACC), 2011. – IEEE, 2011. – С. 941-946.
  15. Zhao J. et al. Kinetic investigation of LiCOO2 by electrochemical impedance spectroscopy (EIS) //International Journal of Electrochemical Science. – 2010. – Т. 5. – №. 4. – С. 478-488.
  16. Jiang Y. et al. Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles //Journal of Industrial Engineering & Management. – 2013. – Т. 6. – №. 2. – С. 686-697.
  17. Rahmoun A., Biechl H. Modelling of Li-ion batteries using equivalent circuit diagrams //PRZEGLAD ELEKTROTECHNICZNY. – 2012. – Т. 88. – №. 7 B. – С. 152-156.
  18. He H., Xiong R., Fan J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach //energies. – 2011. – Т. 4. – №. 4. – С. 582-598.
  19. Wang C., Appleby A. J., Little F. E. Electrochemical impedance study of initial lithium ion intercalation into graphite powders //Electrochimica acta. – 2001. – Т. 46. – №. 12. – С. 1793-1813.
  20. Lee J., Nam O., Cho B. H. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering //Journal of Power Sources. – 2007. – Т. 174. – №. 1. – С. 9-15.
  21. Johnson V. H., Pesaran A. A., Sack T. Temperature-dependent battery models for high-power lithium-ion batteries. – City of Golden: National Renewable Energy Laboratory, 2001.
  22. Hu X., Li S., Peng H. A comparative study of equivalent circuit models for Li-ion batteries //Journal of Power Sources. – 2012. – Т. 198. – С. 359-367.
  23. Santhanagopalan S., White R. E. Online estimation of the state of charge of a lithium ion cell //Journal of Power Sources. – 2006. – Т. 161. – №. 2. – С. 1346-1355.
  24. Rahimian S. K., Rayman S., White R. E. Comparison of single particle and equivalent circuit analog models for a lithium-ion cell //Journal of Power Sources. – 2011. – Т. 196. – №. 20. – С. 8450-8462.
  25. Bartlett A. et al. Model-based state of charge estimation and observability analysis of a composite electrode lithium-ion battery //Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. – IEEE, 2013. – С. 7791-7796.
  26. Moura S. J., Chaturvedi N. A., Krstic M. Adaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model //Journal of Dynamic Systems, Measurement, and Control. – 2014. – Т. 136. – №. 1. – С. 011015.
  27. Klein R. et al. State estimation of a reduced electrochemical model of a lithium-ion battery //American Control Conference (ACC), 2010. – IEEE, 2010. – С. 6618-6623.
  28. Fang H. et al. Adaptive estimation of state of charge for lithium-ion batteries //American Control Conference (ACC), 2013. – IEEE, 2013. – С. 3485-3491.

Военно-специальные науки Aeroballistic method of increasing of ballistic efficiency of the guided aviation bombs. Key words: distance of flight, guided aviation bomb, additional airfoil. Fomicheva Olga Anatolievna, candidate [email protected], Russia, Tula, Tula State University of technical science, docent, УДК 621.354.341 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ФУНКЦИОНИРОВАНИЯ СИСТЕМЫ РАЗОГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ С ПОМОЩЬЮ ХИМИЧЕСКОГО НАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА Е.И. Лагутина В статье приведена математическая модель процесса поддержания аккумуляторной батареи в оптимальном тепловом состоянии в условиях низких температур окружающего воздуха за счет использования химического нагревательного элемента. Ключевые слова: термостатирование, конвективный теплообмен, аккумуляторная батарея, химический нагревательный элемент, математическая модель. На данном этапе развития вооружения и военной техники сложно себе представить успешное ведение боевых действий с минимальными собственными потерями без единой системы управления войсками. С учетом все возрастающей динамичности боевых действий основу системы управления войсками в тактическом звене управления составляют радиосредства. Такая роль радиосредств в системе управления в свою очередь заставляет особое внимание обращать и на элементы питания радиосредств – аккумуляторную батарею, как основу их бесперебойной работы. С учетом климатических особенностей нашей страны (наличие большого процента территорий с преимущественно холодным климатом, возможность успешного ведения боевых действий на некоторых операционных направлениях Дальнего Востока только в зимние месяцы) поддержание оптимального теплового режима работы аккумуляторной батареи в условиях низких температур окружающего воздуха является одной из важнейших задач. Именно ресурсосберегающие условия работы аккумуляторных батарей во многом определяют устойчивое функционирование системы связи, а, следовательно, и успешное выполнение боевых задач. 105 Известия ТулГУ. Технические науки. 2016. Вып. 4 На данный момент разработано достаточно много устройств термостатирования. Но общими недостатками для них, в основном, являются относительно большое энергопотребление (причем запитываются они от самой аккумуляторной батареи) и необходимость участия человека в управлении процессом термостатирования. Учитывая вышеперечисленные недостатки, в разрабатываемом устройстве термостатирования, в сочетании с теплоизолирующим корпусом, в качестве основного средства поддержания оптимального теплового режима работы аккумуляторной батареи предлагается использовать химический нагревательный элемент на основе перенасыщенного ацетата натрия трехводного NaCH3COO·3H2O с равновесной температурой фазового перехода Тф= 331 К и скрытой теплотой фазового перехода rт = 260 кДж/кг, который стабилен в условиях переохлаждения при введении небольших добавок и может переохлаждаться, по данным , до Т = 263 К. Проведенный патентный поиск показал наличие очень небольшого количества патентов с описанием тепловых аккумуляторов фазового перехода (ТАФП), использующих в качестве теплоаккумулирующих материалов (ТАМ) переохлажденные жидкости. Это свидетельствует о практическом отсутствии в данной области апробированных технических решений, позволяющих реализовать управляемый процесс отдачи ранее накопленной теплоты. Учитывая также, что удельная теплота фазового перехода выбранного ТАМ достаточно велика, и при этом он способен переохлаждаться до весьма низких значений температуры , то возникает необходимость провести самостоятельное расчетное исследование данного вещества с целью выявления его практической применимости. За основу для построения математической модели ТАФП взята задача Стефана, представляющая собой задачу о распределении температуры в теле при наличии фазового перехода, а также о местонахождении фаз и скорости движения границы их раздела. Для простоты мы рассмотрим плоскую задачу (когда поверхностью фазового перехода является плоскость). С классической точки зрения она является задачей математической физики и сводится к решению следующих уравнений : 2 dT1 2 d T1 = a1 . для 0 < x < ξ, 2 dτ dx 2 dT2 2 d T2 = a2 . для ξ < x < ∞, dτ dx 2 с дополнительными условиями T1 = C1 = const < Tф при x = 0, T2 = C = const > Tф и условиями фазового перехода 106 при τ = 0, (1) (2) (3) (4) Известия ТулГУ. Технические науки. 2016. Вып. 4 2. В обратимых процессах фазового перехода ТАМ плавлениекристаллизация при τ=0 границы раздела фаз сформированы, температурное поле ТАМ в растущей фазе линейно, а температура исчезающей фазы равна температуре фазового перехода. 3. Теплопроводность ТАМ в продольном направлении отсутствует. 4. Процесс фазового превращения ТАМ принимается одномерным. При этом границы раздела фаз неизменны по форме и в каждый момент времени представляют собой цилиндрические поверхности, расположенные концентрично по отношению к стенкам корпуса химического нагревательного элемента. 5. Тепловые потери в окружающую среду от ТАФП в процессе его разрядки и на нагрев соседних с корпусом аккумулятора деталей радиостанции не учитываются. 6. Коэффициенты переноса (теплоотдачи, теплопередачи, теплопроводности) и удельные теплоемкости постоянны и не зависят от температуры. Процесс конвективного теплообмена ТАМ со стенками корпуса химического нагревательного элемента описывается уравнением q раз (τ) = ак ⋅ Fк (Tтам (τ) − Tк (τ)) , (11) где qраз(τ) – тепловая мощность, отдаваемая корпусу химического нагревательного элемента, Вт; ак – коэффициент теплоотдачи от ТАМ к корпусу химического нагревательного элемента, Вт/(м2·К); Fк –площадь соприкосновения ТАМ с внутренней стенкой корпуса химического нагревательного элемента, м2; Ттам(τ) – температура теплоаккумулирующего материала, К; Тк(τ) – температура стенки корпуса химического нагревательного элемента, К. При τ>0 справедливы следующие уравнения: Tф − Т там (τ) q раз (τ) = λтв ⋅ ⋅ Fк, (12) т z (τ) dz (τ) q раз (τ) = ρ тв ⋅ r ⋅ ⋅ Fк, (13) т r d (τ) где λтв т – коэффициент теплопроводности ТАМ в твердой фазе, Вт/(м·К); z(τ) – толщина кристаллизовавшегося слоя ТАМ в момент времени τ, м; 3 ρ тв т – плотность ТАМ в твердой фазе, кг/м. Принятое допущение об описании теплового состояния корпуса химического нагревательного элемента по его средней температуре дает возможность не рассчитывать локальные скоростные поля и коэффициенты теплоотдачи в различных точках. Тогда при τ>0 справедливо следующее уравнение: q раз (τ) = а т ⋅ Fт (Tтам (τ) − Tк (τ)) , (14) 108 Военно-специальные науки где ат – коэффициент теплоотдачи от аккумулирующего материала к поверхности теплообмена, Вт/(м2·К); Fт – площадь поверхности теплообмена, м2; Учитывая, что подводимая к корпусу химического нагревательного элемента теплота идёт на увеличение его внутренней энергии и на теплопотери в корпус батареи, при τ>0 имеет место следующее уравнение: dT (τ) q раз (τ) = Ск ⋅ к + ав ⋅ Fв (Tв (τ) − T0) , (15) dτ где Ск – общая теплоемкость корпуса химического нагревательного элемента, соприкасающегося с корпусом батареи, Дж/К; ав – коэффициент теплоотдачи от стенок химического нагревательного элемента к поверхности батареи, Вт/(м2·К); Fв – площадь поверхности корпуса химического нагревательного элемента, соприкасающегося с корпусом батареи, м2; Т0 – начальная температура батареи, К. Последним уравнением, описывающим процесс функционирования системы ТАФП – корпус аккумуляторной батареи при τ>0, является балансовое уравнение: q раз (τ) = ав ⋅ Ск ⋅ (Tк (τ) − Tв (τ)) . (16) Система уравнений (11 – 16) представляет собой математическую модель функционирования системы разогрева корпуса аккумуляторной батареи в период разрядки ТАФП. Неизвестными функциями в ней являются qраз(τ), z(τ), Тк(τ), ТВ(τ), Ттам(τ). Поскольку число неизвестных функций равно числу уравнений, то данная система замкнута. Для её решения в рассматриваемом случае сформулируем необходимые начальные и граничные условия: q раз (0) = 0   0 ≤ z (τ) ≤ δ ; z (0) = 0  т (17)  Tк (0) ≈ Tф  TБ (0) = Tв (0) = Tтам (0) = T0 где δ т – толщина корпуса батареи, м; ТБ – температура батареи в момент времени τ, К. Путем алгебраических преобразований уравнений (11 – 17) получаем систему, состоящую из двух дифференциальных уравнений: E − D ⋅ Tк (τ) dz (τ) (18) = , dτ N ⋅ (W + B ⋅ z (τ)) dTк (τ) E − D ⋅ Tк (τ) = − I ⋅ Tк (τ) + M , (19) dτ Z + Y ⋅ z (τ) где B, W, D, E, I, M, N, Z, Y – некоторые константы, рассчитываемые по формулам (20 – 28): B = ав ⋅ а т ⋅ Fв ⋅ Fц, (20) 109 Известия ТулГУ. Технические науки. 2016. Вып. 4 W = (a т ⋅ Fк + ав ⋅ Fв) ⋅ λтв т ⋅ Fк, D = B ⋅ λтв т ⋅ Fк, E = D ⋅ Tф, a ⋅F I= Б Б, CБ M = I ⋅ T0 , (21) (22) (23) (24) (25) (26) N = ρ тв т ⋅ rr ⋅ Fк, Z = W ⋅ CБ, (27) Y = B ⋅ CБ. (28) 2 где aБ – коэффициент температуропроводности батареи, м /с, FБ – площадь поверхности батареи, соприкасающейся с химическим нагревательным элементом, м2; СБ – теплоемкость батареи, Дж/К. Анализируя систему дифференциальных уравнений можно сделать вывод об их нелинейности. Для решения этой системы с начальными и граничными условиями целесообразно воспользоваться численными методами, например, методом Рунге-Кутта четвертого порядка, реализуемым с помощью компьютерной программы Mathcad для Windows. Список литературы 1. Исследование возможности применения переохлажденных жидкостей в качестве теплоаккумулирующих материалов в фазопереходных тепловых аккумуляторах, устанавливаемых на мобильные машины для предпускового разогрева их двигателей зимой: отчет о НИР (итоговый) / Воен. инж.-техн. ун-т; рук. В.В. Шульгин; отв. исполн.: A.Г. Мелентьев. СПб., 2000. 26 с. № 40049-Л. Инв. №561756-ОФ. 2. Булычев В.В., Челноков B.C., Сластилова С.В. Накопители тепла с фазовым переходом на основе Al-Si-сплавов //Известия высших учебных заведений. Черная металлургия. № 7. 1996. С. 64-67. 3. Исследование возможности применения переохлажденных жидкостей в качестве теплоаккумлирующих материалов в фазопереходных тепловых аккумуляторах, устанавливаемых на мобильные машины для предпускового разогрева их двигателей зимой: отчет о НИР (промежуточ. по этапу №3) / Воен. инж.-техн. ун-т; рук. В.В. Шульгин; отв. исполн.: A.Г. Мелентьев. СПб., 2000. 28 с. № 40049-Л. Инв. № 561554-ОФ. 4. Патанкар С. В., Сполдинг Д. Б. Тепло- и массообмен в пограничных слоях / под ред. акад. АН БССР А.В. Лыкова. М.: Энергия, 1971. 127 с. 5. Mathcad 6.0 PLUS. Финансовые, инженерные и научные расчеты в среде Windows 95/ перевод с англ. М.: Информационно-издательский дом «Филинъ», 1996. 712 с. 110 Военно-специальные науки Лагутина Елизавета Игоревна, адъюнкт кафедры радио, радиорелейной, тропосферной, спутниковой и проводной связи, [email protected], Россия, Рязань, Рязанское высшее воздушно-десантное командное училище MATHEMATICAL MODEL OF FUNCTIONING SYSTEM WARMING UP THE BATTERY WITH USING A CHEMICAL HEATING ELEMENT E.I. Lagutina In the article, the mathematical model of the process of maintaining the battery in optimum thermal condition at low ambient temperatures using a chemical heating element. Key words: temperature control, convective heat transfer, battery, chemical heating element, mathematical model. Lagutina Elizaveta Igorevna, adjunct of the department of radio, radio relay, tropospheric, satellite and wire line communication, [email protected], Russia, Ryazan, Ryazan higher airborne command school УДК 62-8 СРАВНИТЕЛЬНЫЙ АНАЛИЗ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ГАЗОДИНАМИЧЕСКИХ ПРОЦЕССОВ В ПРОТОЧНОМ ОБЪЕМЕ А.Б. Никаноров В работе проведен сравнительный анализ с определением области целесообразного применения математических моделей газодинамических процессов в проточных объемах, полученных на основе законов сохранения массы, энергии и количеств движения, полученных для среднеинтегральных параметров среды. Ключевые слова: воздушно-динамический рулевой привод, закон сохранения, математическая модель, силовая система, проточный объем. В работе был рассмотрен подход к построению моделей газодинамических процессов на базе основных законов сохранения для среднеинтегральных по объему и поверхности термодинамических функций и параметров. Получена математическая модель для газодинамических процессов в проточном объеме. В данной статье рассматриваются модели следующего уровня идеализации: 1. Модель квазистатических процессов в проточном объёме для среднеинтегральных термодинамических функций и параметров. Рассмотрим процесс, протекающий в объеме w0 (рис. 1), при этом полагая его квазистатическим, то есть полагая, что скорость движения газа в объеме также, как скорость механического процесса деформации контрольной поверхности пренебрежимо мала по сравнению со скоростями переноса среды через контрольную поверхность объема. 111

Подробности Опубликовано 28.01.2020

Обновление тематических коллекций в ЭБС «Лань»

ЭБС «Лань» информирует о том, что за ноябрь и декабрь 2019 года обновлены доступные нашему университету тематические коллекции в ЭБС «Лань»:
Инженерно-технические науки - Издательство «Лань» - 29
Математика - Издательство «Лань» - 6
Физика - Издательство «Лань» - 5
Ознакомиться с полным списком новой литературы Вы можете .
Надеемся, что новая коллекция литературы будет полезна в учебном процессе.

Режим работы библиотеки в период сессии

Подробности Опубликовано 09.01.2020

Уважаемые студенты и сотрудники университета! В период сессии (с 09.01.2020) библиотека работает:

  • абонементы: пн.-пт. с 10:00 до 18:00
  • читальные залы №1 и №2: пн.-пт. с 10:00 до 17:00
  • фотографирование на читательские билеты: пн.-пт. с 11:00 до 16:00, пом. 11-30 (1 корпус, 1 этаж).

С новым, 2020 годом!

Подробности Опубликовано 27.12.2019

Дорогие читатели! Коллектив библиотеки поздравляет вас с Новым годом и Рождеством! От всей души желаем счастья, любви, здоровья, успехов и радости вам и вашим семьям!
Пусть грядущий год подарит вам благополучие, взаимопонимание, гармонию и хорошее настроение.
Удачи, процветания и исполнения самых заветных желаний в новом году!

    NiMH - . - . : , -.

    MATHEMATICAL MODEL OF HYBRID ELECTRIC VEHICLE HIGH-VOLTAGE BATTERY IDENTIFICATION

    S. Serikov, Associate Professor, Candidate of Technical Sciences, KhNAHU

    Abstract. The mathematical model of hybrid electric vehicle NiMH high-voltage battery is obtained. This model allows to explore the interaction of vehicle tractive electric drive and high-voltage battery at the electric motive power motion and in the process of recuperation of braking kinetic energy. Key words: identification, mathematical model, high-voltage battery, electromotive force, internal re-sistance, state of charge, rated battery capacity.

    (), - . - (). , .

    - , . - - , -, -, - . - - - . - , - - . - - - . - - - , - - .

    -, / 35300 70130 100200 140200 90120 150 100

    -, /3 5090 60100 60100 100210 75110 160 100

    , / 1545 3560 3060 5580 80120 100 150

    300600 4001200 10001500 1000 250500 500 300

    , ../ 70400 400500 500 150800 300 >1000 >1000

    2,1 -. . -

    ()0,15 2,00TAB TAB AK

    0,1TAB TAB TAB nomC C = = - ; TABC , - - ; TAB nomC - . -

    2 % . 8 . 90 % 1 . - - - . - - - - (NiMH), -, -. - 1,2 BAKE = . - -

    ()TAB TAB AK TABE n E= ,

    () ()() ()() ()()

    8,2816 1 23,575 1

    30,0 1 23,7053 1

    12,588 1 4,131 1

    0,8658 1 1,37 , B .

    NiMH 5 % . 1 . - 60 % - 20 . - - (-, - ..). - -

    3,5 BAKE = . - 10 % . 2 3 . - . . Toyota Prius III (- 2003 .) NiMH , 168 -, 28 , -

    201,6 BTAB nomU = . Toyota Prius II (20002003 .) NiMH , 228 -, 38 .

    273,6 BTAB nomU = . 6,5 TAB nomC = ,

    max 80 ATAB disI = ,

    max 50 ATAB chgI = .

    TAB TAB TABTAB nom

    0TAB - 0t = . - - (TABE) - (TABR),

    TAB TAB TAB TABU E I R= . - , - . TABE TABR - , - (0TABt), - (TABI)

    ()0,TAB TAB TAB TABE f I t= ;()0,TAB TAB TAB TABR f I t= .

    ()TAB TAB TAB TAB TAB TAB TABP U I E I R I= = .

    ()21 42TAB TAB TAB TAB TABTABI E E R PR= . - maxTAB TABP P> , maxTABP - . -

    TAB VD inv dop VD

    0VD gnrP P= < ; dopP -, - ; inv . - - - . - - , - (- -

    0,1...10 cSCT = .

    1. , - .

    ()TAB TAB AK TABE n E=

    0,46263 0,697080,41778 1,1516 , B ,

    0,00352 0,25920,48776 1,1364 , B ,

    ()(),TAB TAB TABE f sign I= :

    0,093727 1,197 , B , 0;

    0,16112 1,2352 , B , 0.

    TAB (0TABI) 0,018274Rdis = , (0TABI <) 0,0075985Rchg = . - - 228TABn = , - - , . 3.

    NiMH Panasonic Toyota Prius, . , - . 5.

    ()(),TAB TAB TABE f sign I=

    ()32VD d d q qP i u i u= + du qi qu

    ()(),TAB TAB TABR f sign I=

    VD TAB VD inv dop

    NiMH . - - - - , . - - - .

    1. James Larminie, John Lowry. Electric vehicle technology explained. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chiches-ter, West Sussex PO19 8SQ, England. 2003. 296 p.

    2. Dhameja, Sandeep. Electric vehicle battery systems / Sandeep Dhameja.Sandeep Dhameja. Newnes, 2002, 230 p.

    3. K.J. Kelli, M. Mihalic, M. Zolot. Battery us-age and thermal performance of the Toyota Prius and Honda Insight for various chassis dynamometer test procedures. Preprint. NREL/CP-540-31306, November, 2001.

    4. Loic Boulon, Daniel Hissel, Marie-Cecile Pera. Multi physics model of a nickel based battery suitable for hybrid electric vehicle simulation // Journal of Asian Electric Vehiclec, Vol. 6, No. 2, December 2008. . 1175-1179.

    5. A H2 PEM Fuel Cell and High Energy Dense Battery Hybrid Energy Source for an Urban Electric Vehicle. N. Schofield, H. T. Yap, C. M. Bingham.

    6. Yuanjun Huang, Chengliang Yin, Jianwu Zhang. Modeling and Development of the Real-time Control Strategy For Parallel Hybrid Electric Urban Buses / WSEAS

    TRANSACTIONS on INFORMATION SCIENCE & APPLICATIONS. Issue 7, Volume 5, July 2008. . 11131126.

    7. Carlos Martinez, Yossi Drori and Joe Ciancio. Smart Battery Primer. Intersil Application Note. AN126.0. July 11, 2005.

    8. Osvaldo Barbarisi, Roberto Canaletti, Luigi Glielmo, MicheleGosso, Francesco Vasca. State of charge estimator for NiMH batter-ies // Proceedings of the 41-st IEEE confer-ence on decision and control. Las Vegas, Nevada USA, december, 2002. . 17391734.

    9. Francesco Esposito. A sub-optimal energy management strategy for hybrid electric vehicles. http://www.fedoa.unina.it/1944/1/Esposito_Francesco_Ingegneria_Elettrica.pdf

    10. Xi Wei. Modelling and control of a hybrid electric drivetrain for optimum fuel econ-omy, performance and driveability. Disser-tation. Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University. 2004. 175 p.

    11. .. / .. , .. . . : , 2005. 240 .

    12. NickeI-metal hydride. Application Manual. 2001.

    13. Technical Articles. Toyota Series Hybrid. High-Voltage battery http://www.autoshop101.com/forms/Hybrid03.pdf.

    14. .. / .. - // . 2006. 1. . 1819.

    15. . . -: / . . // . 2006. . 6. 3. . 146149.

    16. M. Zolot, A. Pesaran, M. Mihalic. (NREL). Thermal Evaluation of Toyota Prius Battery Pack // National Renewable Energy Labo-ratory. Presented at the Future Car Con-gress, June 2002.