Восемь простых схем на транзисторах для начинающих радиолюбителей. Биполярные транзисторы

Полевые транзисторы в практике начинающих радиолюбителей

Эта статья предназначена в раздел «Начинающему радиолюбителю». Задолго до появления в журнале «Радио» № 9 – 2007 г. статьи В. Андрюшкевича «Измерение параметров полевых транзисторов», руководствуясь теми же принципами и задачами, я сделал прибор, подобный описанному в статье, но, на мой взгляд, значительно проще схемотехнически и технологически. Думаю, начинающие радиолюбители оценят это. С другой стороны прибор В. Андрюшкевича точнее и универсальнее, создан на более современной элементной базе, с хорошими эргономическими свойствами, короче – более высокого уровня.

В свое время автор столкнулся с проблемой подбора распространенных полевых транзисторов (ПТ) для установки в конкретные схемы усилителей, истоковых повторителей, смесителей и др. Применяя известные стандартные схемы для измерения параметров ПТ и, убедившись в большом разбросе величин измеряемых параметров, было решено собрать простейший комбинированный прибор для измерения наиболее часто применяемых в практике радиолюбителей параметров: ток стока, напряжение отсечки, крутизна характеристики.

Сначала немного теории. Она излагается только для дальнейшего практического применения и понимания работы прибора, и не больше. Поэтому опущена физика работы ПТ и некоторые теоретические положения. Именно на практическом аспекте применяемых положений и сделан акцент. Надеюсь, что для начинающих радиолюбителей небольшое описание работы прибора будет полезным и применимым в создании реальной конструкции.

Передаточная (управляющая) характеристика полевых транзисторов с управляющим p-n – переходом.

На приведенном рисунке изображена схема измерения тока стока полевого транзистора. В обозначениях: затвор – з, сток – с, исток – и. Кроме тока стока важнейшей характеристикой ПТ является напряжение отсечки Uотс. Это напряжение между затвором и истоком (Uзи), при котором ток стока равняется почти 0, хотя обычно его принимают в 10 мкА.

Если Uзи равняется 0, то ток стока ПТ будет максимальным и называется током насыщения, или током полного открытого канала, или начальным током стока. Обозначается Iс.нач. (иногда Iс.о).

Если на затвор ПТ подавать напряжение смещения (оно же Uзи, на рис.1 это батарея 1,5v), и на абсциссе отразить Uотс., а на ординате Iс.нач. и другие величины тока стока при различном Uзи (смещении), то можно построить кривую, которая называется вольт-амперной характеристикой ПТ. Таким образом, как видно из графика, Ic зависит от величины Uотс.

Определение крутизны характеристики (S) по собранной схеме (рис.1) проводится по формуле:

S = Iс.нач. – Iс/Uзи., где Ic – выбранный оптимальный ток стока при котором будет работать ПТ.

На прямом ее участке, который всегда расположен на графике от 0 до величины Uотс./2 и называется квадратичным , выбирают ток стока Iс, при котором ПТ будет работать наиболее эффективно и не вносить нелинейных искажений в работу стандартной схемы линейного усилителя (рис.3). Обычно это половина квадратичного участка: Uотс./2, тогда Uзи приблизительно будет равно Uотс./4.

На практике Uзи равен падению напряжения на Rн (Uн). Т.е., можно выбрать по кривой S оптимальный ток Iс и далее определить Uзи (есть соответсвующие графики в справочниках – зависимость S от Iс и от Uзи, и наоборот). Далее по закону Ома определить Rн, который необходимо ставить в цепь истока ПТ линейного усилителя. Предположим, что выбран Iс = 6мА, при этом из данных по S-характеристике Uзи = Uн = 0,7 v. Тогда Rн =Uн/Iс = 0,7 v/0,006 А = 116 Ом.

Возможен и другой вариант: зная по характеристикам или измерениям Uотс. можно определить Uзи (=1/4 Uотс.) и далее по графику S определить Ic, а затем и величину Rн.

В работающем усилителе на ПТ можно не выпаивая измерить Uн (падение напряжения на Rн) и, зная номинал Rн из схемы, рассчитать Iс. Например, Iс = Uн/Rн = 0,7 v/116 Ом = 0,006 А (6мА). Сравнивая полученные данные с таблично-паспортными можно подобрать Rн для оптимального Ic.

Определение Uотс. возможно по схеме на рис.4.

Поскольку Ic зависит от Uзи, то S-характеристика может меняться (сдвигаться). Меняется она и при воздействии на ПТ температуры окружающей среды. Чтобы попасть на термостабильную точку, выбирают Uзи = Uотс. – 0,63v. На практике у реальных ПТ при фиксированном Uзи, Ic меняется от 0,1 до 0,5 мА (в справочной литературе есть соотв. графики этой передаточной характеристики).

На вольт-амперных характеристиках ПТ Uси находится в пределах до Uси.нас. – напряжения насыщения сток – исток, и обычно не превышает 2v (для КП303, а для других ПТ иногда больше). Эта характеристика называется выходной.

Схема и работа с прибором.


Реальная схема прибора для измерения параметров ПТ не отличается от приведенных выше схем для измерения Ic и Uотс. Просто прибор стал более универсальным, своего рода стендом для измерения параметров ПТ.

При известном Ic (желаемом, оптимальном, из справочников) сначала определяют Ic.нач. Для этого устанавливают тип канала ПТ переключателями SА2 и SA3 («n – p канал»), а переключатель SA4 («Параметр») устанавливают в положение «Iс.нач.». Микроамперметр (мультиметр) подключают к клеммам ХТ2. Подсоединив ПТ к планке с клеммами ХТ4 включают прибор, нажимают кнопку SB1 «Измерение» и считывают Iс.нач.

Далее определяют Ic, переведя переключатель SA4 в положение «Ic». Пи этом резистором R2 («Уст. Uзи») изменяют (по шкале этого резистора) Uотс. от величины при которой ток стока будет минимальным (около 10 мкА) до величины, близкой ¼Uотс. Микроамперметр покажет Ic: вместе с величиной Uзи на графике они образуют точку на квадратичном участке кривой. Потом рассчитывают крутизну характеристики (S) ПТ:

S = Ic.нач - Ic/Uзи, где Uзи =1/4Uотс.(эмпирически подобранное соотношение).

Можно сначала определить Uотс. (переключатель SА4 в соответствующем положении), разделить эту величину на 4, получив Uзи, а вслед за этим и Ic по графику.

При измерении Uотс. (когда мультиметр подключают к клеммам вольтметра) важно, если пользуются одним и тем же мультиметром, не забыть замкнуть между собой клеммы милли(микро)амперметра ХТ2 перемычкой S1.

Uси обычно равно 10 v. В приборе можно его менять, т.к. в справочниках иногда приводятся графики ВАХ при другом напряжении. То же самое можно сказать и об Uзи – его величину можно менять. Для этих целей служат регулируемые стабилизаторы положительного и отрицательного напряжения, которые используются для питания цепи стока ПТ от 2 до 15 v, а цепи затвора - от 0 до -5 v. Иногда при измерении параметров 2-х затворных ПТ требуется на второй затвор подавать положительное напряжение. Для этой цели в приборе установлен переключатель SA2.2, меняющий полярность напряжения, получаемого со стабилизатора смещения, на противоположную. Собственно только поэтому этот переключатель не совмещен с переключателем типа канала. Клемму «К» на планке ХТ4 можно использовать (или дополнительно установить еще одну) для подключения второго затвора, коммутировав ее с выходом стабилизатора напряжения смещения (на схеме не показано).

Регуляторы напряжения следует проградуировать – тогда не понадобиться применять дополнительные клеммы и приборы для измерения Uси и Uзи. Чтобы не менять местами щупы мультиметра при измерениях, клеммы ХТ2 и ХТ3 включены в схеме через соответствующие диодные мосты, а полярность питающих напряжений меняется на противоположную, переключателем SА2. Величины самих же напряжений следует устанавливать такими, какие приводятся в справочниках.

Часто можно слышать об опасности повреждения ПТ статическим электричеством, наводящимся из электросети через БП (также и от паяльника, от рук, одежды и т.д.). Конечно, оптимальным является питание прибора от «Кроны» и элемента типа АА, при этом риск повреждения ПТ сетевой статикой минимален. И если напряжений указанных батарей для измерения маломощных ПТ достаточно, то так и следует поступить – вставить в прибор эти две батареи. С другой стороны, мой практический опыт работы с изготовленным прибором ни разу не привел к повреждению ПТ. Очевидно, что этому способствовали определенные свойства конструкции и соблюдение обычных правил при работе с полевыми транзисторами. В трансформаторе Т1 применена тефлоновая межобмоточная изоляция, подача питания на подсоединенный к прибору ПТ в схеме – через кнопку SB1 «Измерение». Кстати, трансформатор, наиболее доступный и подходящий для данного прибора по величине напряжений на вторичных обмотках – ТВК-70Л2.

Самое простое правило – выводы ПТ перед и при подсоединении к клеммам прибора всегда должны быть закорочены (несколько витков мягкого луженого тонкого провода вокруг выводов у основания транзистора). При измерениях провод, естественно, снимается.

Прибор смонтирован в корпусе старенького АВО-63, где удалось разместить блок питания и использовать штатную стрелочную измерительную головку. Внешний вид прибора показан на рис.6. Выводы испытуемого ПТ подключаются к разъему на конце короткого шлейфа от БП персонального компьютера.

В заключение следует заметить, что приведенная схема не догма и при воплощении в реальный прибор для радиолюбителя тут целое поле возможностей и вариантов изменения схемотехники и конструктива.

Василий Кононенко (RA0CCN).

Как же работает транзистор?

Рассмотри хорошенько рис. 93. Слева на этом рисунке ты видишь упрощенную схему усилителя на транзисторе структуры p-n-p и иллюстраций, поясняющие сущность работы этого усилителя. Здесь, как и на предыдущих рисунках, дырки областей p-типа условно изображены кружками, а электроны области n-типа - черными шариками таких же размеров. Запомни наименования p-n переходов: между коллектором и базой - коллекторный, между эмиттером и базой - эмиттерный.

Рис. 93. Упрощенная схема усилителя на транзисторе структуры p-n-p и графики, иллюстрирующие его работу.

Между коллектором и эмиттером включена батарея Б к (коллекторная), создающая на коллекторе по отношению к эмиттеру отрицательное напряжение порядка нескольких вольт. В эту же цепь, именуемую коллекторной, включена нагрузка R н, которой может быть телефон или иной прибор - в зависимости от назначения усилителя.

Если база ни с чем не будет соединена, в коллекторной цепи появится очень слабый ток (десятые доли миллиампера), так как при такой полярности включения батареи Б к сопротивление коллекторного p-n перехода окажется очень большим; для коллекторного перехода это будет обратный ток. Ток коллекторной цепи I к резко возрастает, если между базой и эмиттером включить элемент смещения Б с, подав на базу по отношению к эмиттеру небольшое, хотя бы десятую долю вольта, отрицательное напряжение. Вот что при этом произойдет. При таком включении элемента Б с (имеется в виду, что зажимы для подключения источника усиливаемого сигнала, обозначенного на схеме знаком «~» - синусоидой, соединены накоротко) в этой новой цепи, называемой цепью базы, пойдет некоторый прямой ток I б; как и в диоде, дырки в эмиттере и электроны в базе будут двигаться встречно и нейтрализоваться, обусловливая ток через эмиттерный переход.

Но судьба большей части дырок, вводимых из эмиттера в базу, иная, нежели исчезнуть при встрече с электронами. Дело в том, что при изготовлении транзисторов структуры p-n-p насыщенность дырок в эмиттере (и коллекторе) делают всегда большей, чем насыщенность электронов в базе. Благодаря этому только небольшая часть дырок (меньше 10%), встретившись с электронами, исчезает. Основная же масса дырок свободно проходит в базу, попадает под более высокое отрицательное напряжение на коллекторе, входит в коллектор и в общем потоке с его дырками перемещается к его отрицательному контакту. Здесь они нейтрализуются встречными электронами, вводимыми в коллектор отрицательным полюсом батареи Б к. В результате сопротивление всей коллекторной цепи уменьшается и в ней течет ток, во много раз превышающий обратный ток коллекторного перехода. Чем больше отрицательное напряжение на базе, тем больше дырок вводится из эмиттера в базу, тем значительнее ток коллекторной цепи. И, наоборот, чем меньше отрицательное напряжение на базе, тем меньше и ток коллекторной цепи транзистора.

А если в цепь базы последовательно с источником постоянного напряжения, питающего эту цепь, вводить переменный электрический сигнал? Транзистор усилит его.

Процесс усиления в общих чертах происходит следующим образом. При отсутствии напряжения сигнала в цепях базы и коллектора текут токи некоторой величины (участка О а на графиках на рис. 93), определяемые напряжениями батарей и свойствами транзистора. Как только в цепи базы появляется сигнал, соответственно ему начинают изменяться и токи в цепях транзистора: во время отрицательных полупериодов, когда суммарное отрицательное напряжение на базе возрастает, токи цепей увеличиваются, а во время положительных полупериодов, когда напряжения сигнала и элемента Б с противоположны и, следовательно, отрицательное напряжение на базе уменьшается, токи в обеих цепях тоже уменьшаются. Происходит усиление по напряжению и току.

Если во входную цепь, т. е. в цепь базы, подан электрический сигнал звуковой частоты, а нагрузкой выходной - коллекторной - цепи будет телефон, он преобразует усиленный сигнал в звук. Если нагрузкой будет резистор, то создающееся на нем напряжение переменной составляющей усиленного сигнала можно будет подать во входную цепь второго транзистора для дополнительного усиления. Один транзистор может усилить сигнал в 30 - 50 раз.

Точно так же работают и транзисторы структуры n-p-n, только в них основными носителями тока являются не дырки, а электроны. В связи с этим полярность включения элементов и батарей, питающих цепи базы и коллекторов n-p-n транзисторов, должна быть не такой, как у p-n-p транзисторов, а обратной.

Запомни очень важное обстоятельство: на базу транзистора (относительно эмиттера) вместе с напряжением усиливаемого сигнала обязательно должно подаваться постоянное напряжение, называемое напряжением смещения, открывающее транзистор.

В усилителе по схеме на рис. 93 роль источника напряжения смещения выполняет элемент Б с. Для германиевого транзистора структуры p-n-p оно должно быть отрицательным и составлять 0,1-0,2 В, а для транзистора структуры n-p-n - положительным. Для кремниевых транзисторов напряжение смещения составляет 0,5 -0,7 В. Без начального напряжения смещения эмиттерный p-n переход «срежет», подобно диоду, положительные (p-n-p транзистор) или отрицательные (n-p-n транзистор) полуволны сигнала, отчего усиление будет сопровождаться искажениями. Напряжение смещения на базу не подают лишь в тех случаях, когда эмиттерный переход транзистора используют для детектирования высокочастотного модулированного сигнала.

Обязательно ли для подачи на базу начального напряжения смещения нужен специальный элемент или батарея? Нет, конечно. Для этой цели обычно используют напряжение коллекторной батареи, соединяя базу с этим источником питания через резистор. Сопротивление такого резистора чаше подбирают опытным путем, так как оно зависит от свойств данного транзистора.

В начале этой части беседы я сказал, что биполярный транзистор можно представить себе как два включенных встречно плоскостных диода, совмещенных в одной пластинке полупроводника и имеющих один общий катод, роль которого выполняет база транзистора. В этом нетрудно убедиться на опытах, Для которых тебе потребуется любой бывший в употреблении, но не испорченный германиевый низкочастотный транзистор структуры p-n-p, например МП39 или подобные ему транзисторы МП40 - МП42. Между коллектором и базой транзистора включи последовательно соединенные батарею 3336Л и лампочку от карманного фонаря, рассчитанную на напряжение 2,5 В и ток 0,075 или 0,15 А. Если плюс батареи окажется соединенным (через лампочку) с коллектором, а минус - с базой (рис. 94, а), то лампочка будет гореть. При другой полярности включения батареи (рис. 94,б) лампочка гореть не должна.

Рис. 94. Опыты с транзистором.

Как объяснить эти явления? Сначала на коллекторный p-n переход ты подавал прямое, т. е. пропускное напряжение. В этом случае коллекторный переход открыт, его сопротивление мало и через него течет прямой ток коллектора I к. Значение этого тока в данном случае определяется в основном сопротивлением нити лампочки и внутренним сопротивлением батареи. При втором включении батареи ее напряжение подавалось на коллекторный переход в обратном, непропускном направлении. В этом случае переход закрыт, его сопротивление велико и через него течет лишь небольшой обратный ток коллектора. У исправного маломощного низкочастотного транзистора обратный ток коллектора I КБО не превышает 30 мкА. Такой ток, естественно, не мог накалить нить лампочки, поэтому она и не горела.

Проведи аналогичный опыт с эмиттерным переходом. Результат будет таким же: при обратном напряжении переход будет закрыт - лампочка не горит, а при прямом напряжении он будет открыт - лампочка горит.

Следующий опыт, иллюстрирующий один из режимов работы транзистора, проводи по схеме, показанной на рис. 95, а. Между эмиттером и коллектором того же транзистора включи последовательно соединенные батарею 3336Л и лампочку накаливания. Положительный полюс батареи должен соединяться с эмиттером, а отрицательный - с коллектором (через нить накала лампочки). Горит лампочка? Нет, не горит. Соедини проволочной перемычкой базу с эмиттером, как показано на схеме штриховой линией. Лампочка, включенная в коллекторную цепь транзистора, тоже не будет гореть. Удали перемычку и вместо нее подключи к этим электродам последовательно соединенные резистор сопротивлением 200 - 300 Ом и один гальванический элемент Э б, например типа 332, но так, чтобы минус элемента был на базе, а плюс - на эмиттере. Теперь лампочка должна гореть. Поменяй местами полярность подключения элемента к этим электродам транзистора. В этом случае лампочка гореть не будет. Повтори несколько раз этот опыт и ты убедишься в том, что лампочка в коллекторной цепи будет гореть только тогда, когда на базе транзистора относительно эмиттера действует отрицательное напряжение.

Рис. 95. Опыты, иллюстрирующие работу транзистора в режиме переключения (а) и в режиме усиления (б).

Разберемся в этих опытах. В первом из них, когда ты, соединив перемычкой базу с эмиттером, замкнул накоротко эмиттерный переход, транзистор стал просто диодом, на который подавалось обратное, закрывающее транзистор напряжение. Через транзистор шел лишь незначительный обратный ток коллекторного перехода, который не мог накалить нить лампочки. В это время транзистор находился в закрытом состоянии. Затем, удалив перемычку, ты восстановил эмиттерный переход. Первым включением элемента между базой и эмиттером ты подал па эмиттерный переход прямое напряжение. Эмиттерный переход открылся, через него пошел прямой ток, который открыл второй переход транзистора - коллекторный. Транзистор оказался открытым и по цепи эмиттер - база - коллектор пошел ток транзистора, который во много раз больше тока цепи эмиттер - база. Он-то и накалил нить лампочки. Когда же ты изменил полярность включения элемента на обратную, то его напряжение закрыло эмиттерный переход, а вместе с тем закрылся и коллекторный переход. При этом ток транзистора почти прекратился (шел только обратный ток коллектора) и лампочка не горела.

В этих опытах транзистор был в одном из двух состояний: открытом или закрытом. Переключение транзистора из одного состояния в другое происходило под действием напряжения на базе UБ. Такой режим работы транзистора, проиллюстрированный графиками на рис. 95, а, называют режимом переключения или, что то же самое, ключевым режимом. Такой режим работы транзисторов используют в основном в аппаратуре электронной автоматики.

Какова в этих опытах роль резистора R б? В принципе этого резистора может и не быть. Я же рекомендовал включить его исключительно для того, чтобы ограничить ток в базовой цепи. Иначе через эмиттерный переход пойдет слишком большой прямой ток, в результате чего может произойти тепловой пробой перехода и транзистор выйдет из строя.

Если бы при проведении этих опытов в базовую и коллекторную цепи были включены измерительные приборы, то при закрытом транзисторе токов в его цепях почти не было бы. При открытом же транзисторе ток базы I Б был бы не более 2 - 3 мА, а ток коллектора I К составлял 60 - 75 мА. Это означает, что транзистор может быть усилителем тока.

В приемниках и усилителях звуковой частоты транзисторы работают в режиме усиления. Этот режим отличается от режима переключения тем, что, используя малые токи в базовой цепи, мы можем управлять значительно большими токами в коллекторной цепи транзистора.

Иллюстрировать работу транзистора в режиме усиления можно таким опытом (рис. 95, б). В коллекторную цепь транзистора Т включи электромагнитный телефон Тф 2 между базой и минусом источника питания Б - резистор R б сопротивлением 200 - 250 кОм. Второй телефон Тф 1 включи между базой и эмиттером через конденсатор связи С св емкостью 0,1 - 0,5 мкФ. У тебя получится простейший усилитель, который может выполнять, например, роль одностороннего телефонного аппарата. Если твой приятель будет негромко говорить перед телефоном, включенным на вход усилителя, его разговор ты будешь слышать в телефонах, включенных на выходе усилителя.

Какова роль резистора R б в этом усилителе? Через него на базу транзистора от батареи питания Б подается небольшое начальное напряжение смещения, открывающее транзистор и тем самым обеспечивающее ему работу в режиме усиления. На вход усилителя вместо телефона Тф 1 можно включить звукосниматель и проиграть грампластинку. Тогда в телефонах Тф2 будут хорошо слышны звуки мелодии или голос певца, записанные на грампластинку.

В этом опыте на вход усилителя подавалось переменное напряжение звуковой частоты, источником которого был телефон, преобразующий, как микрофон, звуковые колебания в электрические, или звукосниматель, преобразующий механические колебания его иглы в электрические колебания. Это напряжение создавало в цепи эмиттер - база слабый переменный ток, управляющий значительно большим током в коллекторной цепи: при отрицательных полупериодах на базе коллекторный ток увеличивался, а при положительных - уменьшался (см. графики на рис. 95, б). Происходило усиление сигнала, а усиленный транзистором сигнал преобразовывался телефоном, включенным в цепь коллектора, в звуковые колебания. Транзистор работал в режиме усиления.

Аналогичные опыты ты можешь провести и с транзистором структуры n-p-n, например типа МП35. В этом случае надо только изменить полярность включения источника питания транзистора: с эмиттером должен соединяться минус, а с коллектором (через телефон) - плюс батареи.

Коротко об электрических параметрах биполярных транзисторов. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким параметрам, которые измеряют с помощью специальных приборов. Тебя же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора I КБО статический коэффициент передачи тока h 21Э (читают так: аш два один э) и граничная частота коэффициента передачи тока гр.

Обратный ток коллектора I КБО - это неуправляемый ток через коллекторный p-n переход, создающийся неосновными носителями тока транзистора. Параметр I КБО характеризует качество транзистора: чем он меньше, тем выше качество транзистора. У маломощных низкочастотных транзисторов, например типов МП39 - МП42, I КБО не должен превышать 30 мкА, а у маломощных высокочастотных транзисторов - не более 5 мкА. Транзисторы с большими значениями I КБО в работе неустойчивы.

Статический коэффициент передачи тока h 21Э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Большая (заглавная) буква «Э» в этом выражении указывает на то, что при измерении транзистор включают по схеме с общим эмиттером (о схемах включения транзистора я расскажу в следующей беседе). Коэффициент h 21Э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор - эмиттер и токе эмиттера. Чем больше численное значение коэффициента h 21Э, тем большее усиление сигнала может обеспечить данный транзистор .

Граничная частота коэффициента передачи тока гр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота транзисторов МП39, например, 500 кГц, а транзисторов П401 - П403 - больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент передачи тока h 21Э транзистора уменьшается.

В практической работе надо учитывать и такие параметры, как максимально допустимое напряжение коллектор - эмиттер, максимально допустимый ток коллектора, а также максимально допустимую рассеиваемую мощность коллектора Транзистора - мощность, превращающуюся внутри транзистора в тепло.

Основные сведения о маломощных транзисторах массового применения ты найдешь в прилож. 4.

СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА

Любой усилитель, независимо от частоты, содержит от одного до нескольких каскадов усиления. Для того, чтобы иметь представление по схемотехнике транзисторных усилителей, рассмотрим более подробно их принципиальные схемы.

Транзисторные каскады, в зависимости от вариантов подключения транзисторов, подразделяются на:

1 Каскад с общим эмиттером (на схеме показан каскад с фиксированным током базы - это одна из разновидностей смещения транзистора).

2 Каскад с общим коллектором

3 Каскад с общей базой

Каскад с общим эмиттером обладает высоким усилением по напряжению и току. К недостаткам данной схемы включения можно отнести невысокое входное сопротивление каскада (порядка сотен ом), высокое (порядка десятков Килоом) выходное сопротивление. Отличительная особенность - изменение фазы входного сигнала на 180 градусов (то есть - инвертирование). Благодаря высокому коэффициенту усиления схема с ОЭ имеет преимущественное применение по сравнению с ОБ и ОК.

Рассмотрим работу каскада подробнее: при подаче на базу входного напряжения - входной ток протекает через переход "база-эмиттер" транзистора, что вызывает открывание транзистора и, в следствии этого, увеличение коллекторного тока. В цепи эмиттера транзистора протекает ток, равный сумме тока базы и тока коллектора. На резисторе в цепи коллектора, при прохождении через него тока, возникает некоторое напряжение, величиной значительно превышающей входное. Таким образом происходит усиление транзистора по напряжению. Так как ток и напряжение в цепи - величины взаимосвязанные, аналогично происходит и усиление входного тока.

Схема с общим коллектором обладает высоким входным и низким выходным сопротивлениями. Коэффициент усиления по напряжению этой схемы всегда меньше 1. Входное сопротивление каскада с ОК зависит от сопротивления нагрузки (Rн) и больше его (приблизительно) в Н21э раз . (Величина "Н21э" - это статический коэффициент усиления данного экземпляра транзистора, включенного по схеме с Общим Эмиттером). Данная схема используется для согласования каскадов, либо в случае использования источника входного сигнала с высоким входным сопротивлением. В качестве такого источника можно привести, например, пьезоэлектрический звукосниматель или конденсаторный микрофон. Схема с ОК не изменяет фазы входного сигнала. Иногда такую схему называют Эмиттерным повторителем .

Схема включения транзистора с общей базой используется преимущественно в каскадах усилителей высоких частот. Усиление каскада с ОБ обеспечивает усиление только по напряжению. Данное включение транзистора позволяет более полно использовать частотные характеристики транзистора при минимальном уровне шумов. Что такое частотная характеристика транзистора? Это - способность транзистора усиливать высокие частоты, близкие к граничной частоте усиления, Эта величина зависит от типа транзистора. Более высокочастотный транзистор способен усиливать и более высокие частоты. С повышением рабочей частоты, коэффициент усиления транзистора понижается. Если для построения усилителя использовать, например, схему с общим эмиттером, то при некоторой (граничной) частоте каскад перестает усиливать входной сигнал. Использование этого - же транзистора, но включенного по схеме с общей базой, позволяет значительно повысить граничную частоту усиления. Каскад, собранный по схеме с общей базой, обладает низким входным и невысоким выходным сопротивлениями (эти параметры очень хорошо согласуются при работе в антенных усилителях с использованием так называемых "коаксиальных" несимметричных высокочастотных кабелей, волновое сопротивление которых как правило не превышает 100 ом). Если сравнивать величины сопротивлений для каскада с ОЭ и ОБ, то входное сопротивление каскада с ОБ в (1+Н21э) раз меньше, чем с ОЭ, а выходное в (1+Н21э) раз больше. Каскад с ОБ не изменяет фазы входного сигнала.

В практике радиолюбителя иногда приходится использовать параллельное включение транзисторов для увеличения выходной мощности (коллекторного тока). Один из вариантов данного включения приведен ниже:

При таком включении нужно стремиться использовать транзисторы с близкими параметрами Вст. Транзисторы большой мощности при этом должны устанавливаться на один теплоотвод. Для дополнительного выравнивания токов в данной схеме в цепях эмиттеров применены резисторы. Сопротивление резисторов следует выбирать исходя из падения напряжения на них (в интервале рабочих токов) около 1 вольта (или, по крайней мере, - не менее 0,7 вольта). Данная схема должна применяться с большой осторожностью, так как даже транзисторы одного типа и из одной партии выпуска имеют очень большой разброс по параметрам. Выход из строя одного из транзисторов неизбежно приведет к выходу из строя и других транзисторов в цепочке... При параллельном включении двух транзисторов максимальный суммарный ток коллектора не должен превышать 1,6-1,7 от предельного тока коллектора одного из транзисторов! Количество транзисторов, включенных по этой схеме может быть сколько угодно большим - все зависит от целесообразности...

В радиолюбительской практике иногда необходим транзистор с проводимостью, отличной от имеющегося (например - в выходном каскаде УЗЧ и проч.) . Выйти из положения позволяет схема включения, приведенная ниже:

В данном каскаде используется как правило маломощный транзистор VT1 необходимой проводимости, транзистор VT2 необходимой мощности , но другой проводимости. Данный каскад (в частности) эквивалентен транзистору с проводимостью N-P-N большой мощности с высоким коэффициентом передачи тока базы (h21Э). Если мы используем в качестве VT1, VT2 транзисторы противоположной проводимости - получим мощный составной транзистор с проводимостью P-N-P.

Если в данной схеме применить транзисторы одной структуры - получим так называемый Составной транзистор. Такое включение транзисторов называют Схемой Дарлингтона . Промышленность выпускает такие транзисторы в одном корпусе. Существуют как маломощные (типа КТ3102 и т.п.) так и мощные (например - КТ825) составные транзисторы.

А сейчас поговорим немного о температурной стабилизации усилителя.

Транзистор, являясь полупроводниковым прибором, изменяет свои параметры при изменении рабочей температуры. Так, при повышении температуры, усилительные свойства транзистора ухудшаются. Обусловлено это рядом причин: при повышении температуры значительно увеличивается такой параметр транзистора, как обратный ток коллектора . Увеличение обратного тока коллектора транзистора приводит к значительному увеличению коллекторного тока и к смещению рабочей точки в сторону увеличения тока. При некоторой температуре коллекторный ток транзистора возрастает до такой величины, при которой транзистор перестает реагировать на слабый входной (базовый) ток. Попросту говоря - каскад перестает быть усилительным. Для того, чтобы расширить диапазон рабочих температур, необходимо применять дополнительные меры по температурной стабилизации рабочей точки транзистора. Самым простым способом является коллекторная стабилизация рабочего тока смещения. Рассмотренная нами выше схема каскада по схеме с общим эмиттером является схемой с фиксированным током базы. Ток коллектора в данной схеме зависит от параметров конкретного экземпляра транзистора и должен устанавливаться индивидуально при помощи подбора величины резистора R1. При смене транзистора начальный (при отсутствии сигнала) ток коллектора приходится подбирать заново, так как транзисторы даже одного типа имеют очень большой разброс статического коэффициента усиления тока базы (h21 Э). Другая разновидность каскада - схема с фиксированным напряжением смещения. Эта схема также обладает недостатками, описанными выше:

Для повышения термостабильности каскада необходимо использовать специальные схемы включения:

Схема коллекторной стабилизации, обладая основными недостатками схемы с общим эмиттером (подбор резистора базового смещения под конкретный экземпляр транзистора), тем не менее позволяет расширить диапазон рабочих температур каскада. Как видим, данная схема отличается подключением резистора смещения не к источнику питания, а в коллекторную цепь. Благодаря такому включению удалось значительно (за счет применения отрицательной обратной связи ) расширить диапазон рабочих температур каскада. При увеличении обратного тока коллектора транзистора, увеличивается ток коллектора, что вызывает более полное открывание транзистора и уменьшение коллекторного напряжения. Уменьшение коллекторного напряжения, в свою очередь, уменьшает напряжение начального смещения транзистора, что вызывает уменьшение коллекторного тока до приемлемой величины. Таким образом - осуществляется отрицательная обратная связь, которая несколько уменьшает усиление каскада, но зато позволяет увеличить максимальную рабочую температуру.

Более качественную стабилизацию температурных параметров каскада усиления можно осуществить, если несколько усложнить схему и применить так называемую "эмиттерную " температурную стабилизацию . Данная схема, несмотря на сложность, позволяет каскаду сохранять усилительные свойства в очень широком интервале рабочих температур. Кроме того, применение данной схемы стабилизации дает возможность замены транзисторов без последующей настройки. Отдельно скажу о конденсаторе С3 . Этот конденсатор служит для повышения коэффициента усиления каскада на переменном токе. Он устраняет отрицательную обратную связь каскада. Емкость этого конденсатора зависит от рабочей частоты усилителя. Для усилителя звуковых частот емкость конденсатора может колебаться от 5 до 50 микрофарад, для диапазона радиочастот - от 0,01 до 0,1 микрофарады (но его в некоторых случаях может и не быть) .

ВНИМАНИЕ! Данные расчета получаются довольно приблизительные! Окончательный номинал резистора R1 потребуется подобрать при наладке более точно!

Для начала нам нужно определиться с исходными данными для расчета. На верхнем прямоугольнике даны постоянные величины соответственно для германиевого (Ge) и кремниевого (Si) транзистора.

Для начала расчета нам нужны следующие входные параметры : Напряжение питания (Uk), в Вольтах (Принимаем - как пример - равное 6 вольтам). Ток коллектора (Ik), в Миллиамперах (принимаем равный 1 миллиамперу); тип транзистора (Ge. Si), минимальная рабочая частота Fmin в герцах (предположим 150000 герц - для работы в диапазоне ДВ) . Сопротивление в цепи коллектора R3 принимаем равным 1 Килоому. Величина этого резистора обычно не расчитывается а берется равным 750 ом - 4,7 Килоом. От величины этого резистора зависит коэффициент усиления каскада по переменному току . Транзистор, предположим, КТ315 - кремниевый. Расчет ведем согласно рисунку сверху-вниз!
Вначале по формуле расчитываем сопротивление резистора в цепи эмиттера R4 = 0,6 килоом .
Далее находим сопротивление резистора R2 = 19,5 килоом .
Далее - сопротивление резистора R1 = 70,5 Килоом.
По формуле вычисляем минимальную емкость конденсатора С1 = 0,016 микрофарад . Здесь можно без ухудшения частотных свойств каскада поставить конденсатор большей емкости (например на 0,022 микрофарад).
Так, произведя несложные вычисления, мы получили расчитанный каскад для работы в усилителе радиочастоты. Так как во время расчета мы получили номиналы резисторов не соответствующие стандартному ряду, можно несколько скорректировать их. Так вместо резистора R4 можно поставить резистор на 620 ом, резистор R2 заменим на резистор с номиналом 20 килоом, резистор R1 заменяем на резистор 75 килоом. Эти незначительные отклонения от расчета не приведут к каким либо проблемам при работе каскада - всего навсего слегка изменится коллекторный ток...

Теперь давайте расчитаем работу каскада по переменному току:

Для этого расчета нам потребуются следующие параметры: Сопротивления резисторов R1 - R4, Входное сопротивление следующего (нагрузочного) каскада.



Сначала определяем сопротивление Rэ. Для нашего случая (ток коллектора 1 миллиампер) Rэ = 26 ом,
Далее определим проводимость S = 38.46 микросименса (ориентировочно),
Вычисляем значение R11. Для транзистора типа КТ315Б среднее значение параметра h21э равно 200, отсюда R11 равно 5200,
Величину Rb необходимо определить для вычисления входного сопротивления каскада, являющегося нагрузкой расчитываемого. Она равна (при номиналах резисторов, взятых в нашем примере) 5,75 килоом,
Для упрощения расчета можно не вычислять сопротивление Rн, а принять его равным R3.
Ожидаемый коэффициент усиления данного каскада на транзисторе типа КТ315Б со средним значением h21э равным 200 получается около 40.
Следует иметь в виду, что полученное значение коэффициента усиления каскада весьма приблизительно! На практике это значение может отличаться в 1,5 - 2 раза (иногда - больше) и зависит от конкретного экземпляра транзистора!
При расчете коэффициента усиления транзистороного каскада по переменному току следует учитывать, что этот коэффициент зависит от частоты усиливаемого сигнала. Максимальная частота примененного транзистора должна быть по крайней мере в 15-20 раз выше предельной частоты усиления (определяется по справочнику).

Для написания этой странички использовались материалы из книги "Краткий радиотехнический справочник." Авторы Богданович и Ваксер, Издательство "Беларусь" 1976 год.

Литература

Приведены несколько схем простых устройств и узлов, которые могут быть изготовлены начинающими радиолюбителями.

Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик - он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В - четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора - он достигнет первоначального значения.

Нагрузка усилительного каскада - головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации - резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более "чувствительный” по сравнению с однокаскадным - коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 - в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока - коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 - если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем - около 2 мА.

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй - на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй - усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ - при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), - оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада - резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем - HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Он выдает световые сигналы по принципу меньше нормы - норма - больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один - зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение - вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Ждущий мультивибратор

Такое устройство обладает одним устойчивым состоянием и переходит в другое только при подаче входного сигнала При этом мультивибратор формирует импульс своей длительности независимо от длительности входного. Убедимся в этом проведя эксперимент с макетом предлагаемого устройства.

Рис. 8. Принципиальная схема ждущего мультивибратора.

В исходном состоянии транзистор VТ2 открыт, светодиод HL1 светится. Достаточно теперь кратковременно замкнуть гнезда Х1 и Х2 чтобы импульс тока через конденсатор С1 открыл транзистор VТ1. Напряжение на его коллекторе снизится и конденсатор С2 окажется подключенным к базе транзистора VТ2 в такой полярности, что тот закроется. Светодиод погаснет.

Конденсатор начнет разряжаться ток разрядки потечет через резистор R5, удерживая транзистор VТ2 в закрытом состоянии Как только конденсатор разрядится, транзистор VТ2 вновь откроется и мультивибратор перейдет снова в режим ожидания.

Длительность формируемого мультивибратором импульса (продолжительность нахождения в неустойчивом состоянии) не зависит от длительности запускающего, а определяется сопротивлением резистора R5 и емкостью конденсатора С2.

Если подключить параллельно С2 конденсатор такой же емкости, светодиод вдвое дольше будет оставаться в погашенном состоянии.

И. Бокомчев. Р-06-2000.

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов или .

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов):