К каким средствам измерения относится спектрофотометр. Спектрофотометры

Рассматривая вопрос измерения цвета, возникает сложность в выборе спектрофотометров.

Спектрофотометрия: принципы и оборудование

Рассматривая вопрос измерения цвета, мы понимаем, что цвет — психофизическое ощущение, возникающее в мозге человека под воздействием цветового стимула. Однако психофизическое ощущение измерению не поддается.

Понимая под цветовым стимулом лучистую энергию, проникающую в глаз, следует отметить, что эта энергия определяется физическими свойствами образца и источника освещения. Образец обладает свойством пропускать или отражать падающий на него свет в разных точках спектра по-разному. На этом основан принцип работы спектрофотометра. С помощью встроенного в прибор источника света образец освещается; свет, отраженный от образца либо пропущенный через него, анализируется таким образом, что определяется отношение отраженного от образца или пропущенного через образец светового потока к падающему потоку во многих точках спектра. Т. е. мы получаем на выходе спектральный коэффициент отражения или пропускания, выраженный в процентах.

Однако, кроме спектральной кривой, любой спектрофотометр может представить измеренные данные в колориметрических координатах цвета, например в XYZ или CIE L*a*b*. Координаты цвета получаются расчетным путем из спектрального коэффициента отражения (пропускания), спектрального распределения энергии источника освещения и кривых сложения стандартного наблюдателя (отражающих свойства рецепторов человеческого глаза). По этой причине для измерения цветовых координат спектрофотометром необходимо также указать источник освещения (D50, D65, A, F11 и т. д.) и угол наблюдения (2 или 10 градусов). Цветовое различие между двумя образцами традиционно определяется как расстояние между их цветовыми координатами в цветовом пространстве CIE L*a*b*.

Основные понятия и определения

Как уже упоминалось, способ измерения цвета спектрофотометром связан с разложением лучистого потока, направленного от объекта к глазу на спектральные составляющие и измерением каждого компонента в отдельности.

Спектральный коэффициент пропускания определяется отношением пропущенного лучистого потока к падающему потоку в выбранном узком спектральном интервале.

Спектральный апертурный коэффициент отражения определяется отношением лучистого потока, отраженного от объекта и отраженного от совершенного отражающего рассеивателя. (Далее в статье будет идти речь только о работе спектрофотометров на отражение.) Совершенный отражающий рассеиватель определяется как идеальный однородный рассеиватель с коэффициентом отражения, равным единице.

Белый стандарт

Реальных поверхностей со свойствами совершенного отражающего рассеивателя в природе не существует, однако, в качестве замены используются материалы, близкие по свойствам, так называемые «белые стандарты», которые с помощью специальных методов нормируются к идеальному рассеивателю. Величина спектрального коэффициента отражения белых стандартов меняется в зависимости от длины волны и заключена в пределах 0,970—0,985 в видимой части спектра. Стандарты могут изготавливаться из оксида магния, сульфата бария или других материалов, также могут использоваться керамические плитки. Основная проблема рабочих стандартов — поддержание отражающих свойств в течение длительного времени.

В современных спектрофотометрах диапазон измерения охватывает область от 360 до 750 нм с интервалом измерения 10 нм. Спектральный коэффициент отражения представляет собой плавную кривую с несколькими максимумами. В большинстве приборов отраженный от образца цвет диспергируется с помощью дифракционной решетки и измеряется с помощью кремниевой диодной линейки.

Геометрия измерения

Геометрия измерения определяет, каким образом образец освещается и наблюдается. Международной комиссией по освещению рекомендованы четыре различные геометрии:

1. 45/0. Образец освещается одним или несколькими световыми пучками, оси которых составляют угол 45±5° относительно нормали к поверхности образца. Угол между направлением наблюдения и нормалью к образцу не должен превышать 10°. Угол между осью освещающего пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

2. 0/45. Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Образец наблюдается под углом 45±5° относительно нормали. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

3. D /0. Образец освещается диффузно с помощью интегрирующей сферы. Угол между нормалью к образцу и осью пучка наблюдения не должен превышать 10°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы. Угол между осью наблюдаемого пучка и любым его лучом не должен превышать 5°.

4. 0/ D . Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Отраженный поток собирается с помощью интегрирующей сферы. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы.

Модификации основных типов спектрофотометров

На практике в настоящее время используются только две геометрии измерения — 45/0 и D/0. Остановимся на них подробнее.

Спектрофотометры с геометрией 45/0 относятся к классу недорогого портативного оборудования и успешно используются технологами для контроля цвета, измерения тестовых шкал для построения ICC профилей и выполнения других задач. Первые спектрофотометры с такой геометрией имели один источник света, потом появились приборы с двумя источниками, расположенными симметрично относительно нормали. Однако было замечено, что при освещении образцов с разных сторон измерения цвета могут иметь существенные различия. Для усреднения этих различий стали использоваться спектрофотометры с круговым освещением образца с помощью источника в виде кольца. Встречающаяся аббревиатура этой геометрии измерения — 45/0:с . При всех своих достоинствах такие приборы имеют существенные ограничения в использовании: ими нельзя измерять металлизированные материалы, которые зеркально отражают свет, попавший на них. Очевидно, что то же самое касается высокоглянцевых материалов — чем выше глянец образца, тем выше погрешность измерения.

Эти ограничения снимаются при использовании спектрофотометров с геометрией D/0, поскольку образец освещается диффузно. Тем не менее, для возможности исключения зеркальной составляющей высокоглянцевых материалов приемник света размещается под углом 8° к нормали, а напротив него симметрично относительно нормали устанавливается ловушка блеска, которая может обеспечить включение или исключение соответствующего фактора. Считается, что зеркальная составляющая коэффициента отражения возникает в результате отражения света глянцевой поверхностью.

Свет, который не попадает на образец под углом 8° (благодаря ловушке блеска), не отражается зеркально в направлении приемника, следовательно, отраженный образцом поток состоит только из диффузного света. В таком случае геометрия измерения становится D/8, а не D/0, а наличие или отсутствие зеркального компонента может обозначаться как D /8: i (ловушка закрыта, зеркальный компонент включен) и D /8: e (ловушка открыта, зеркальный компонент исключен). Интегрирующая сфера обычно покрывается сульфатом бария, хотя могут использоваться и другие материалы. Очевидно сходство материалов покрытия сферы с белыми стандартами, использующимися для калибровки спектрофотометра. Чтобы на образец не попал свет, излучаемый источником, между ним и образцом помещается небольшой экран, иначе освещение образца не будет являться диффузным. Большинство этих дорогих высококлассных приборов не относятся к числу портативных, наиболее распространенный диаметр сферы — 150 мм, хотя существуют и переносные сферические спектрофотометры со сферами диаметром 50 мм.

Двухлучевой спектрофотометр

Стабильность работы сферического спектрофотометра зависит от многих факторов. Изменение интенсивности источника освещения, дрейф электроники, старение покрытия интегрирующей сферы снижают точность работы прибора. Обойти эти проблемы позволяет двухлучевая конструкция спектрофотометра. Принцип его работы состоит в том, что одновременно измеряется свет, падающий на образец и отраженный от него. Т. е. прибор калибруется во время каждого измерения. Это позволяет добиться прекрасной стабильности в работе и согласованности нескольких приборов этого типа.

Источники света в спектрофотометрах

Принцип работы спектрофотометра подразумевает независимость измерений от типа источника света в приборе, поскольку мы измеряем отношение отраженного (пропущенного) света к падающему на образец. В настоящее время широко используются два источника света в спектрофотометрах: кварцевая галогеновая лампа и импульсная ксеноновая лампа. Современные спектрофотометры все чаще оснащаются ксеноновыми импульсными лампами. Спектральное распределение таких ламп легко отфильтровать для воспроизведения D65, в то время как галогеновые лампы производят излучение, близкое к источнику А. Это означает, что галогеновые лампы имеют недостаточное излучение в УФ-области, что не позволяет правильно оценить цвет материалов с флуоресцентными отбеливающими добавками.

Такие вещества поглощают энергию в УФ-области и излучают ее в синей области видимого спектра, что компенсирует естественную желтизну материала. Измерить цвет флуоресцирующего материала можно, освещая образец светом, имитирующим D65, имеющим достаточную УФ-составляющую излучения. Очевидно, что оценить присутствие и влияние отбеливающих добавок можно, сравнивая спектральные кривые отражения образца, освещенного ксеноновой лампой за УФ-фильтром, отсекающим УФ-излучение и без него.

Таким образом, можно сделать вывод, что при выборе спектрофотометра следует учитывать оптические свойства материалов, подлежащих измерению и, в соответствии с ними, использовать прибор с определенной геометрией излучения и источником света.

Для чего нужен спектрофотометр?

Спектрофотометр (например, В 1200) - прибор, который измеряет степень поглощения светового потока монохромного спектра. За счет своих особенностей строения он позволяет получать максимально точные данные, т. к. незначимые для исследования факторы не оказывают на результат никакого влияния. Он настраивается на определенную чувствительность и детализацию.

Какие отделы им комплектуют?

Для начала следует сказать, что существует две разновидности фотометра : одно- и двухлучевая. С помощью первой получают фактические показатели образца, а применение второй обеспечивает возможность сравнительного анализа его с каким-либо эталоном. Исходя из основного направления той или иной лаборатории выбирают конкретную модель устройства.

В целом, спектрофотометры необходимы для вычисления концентрации тех или иных веществ в растворе, их плотности, определения структуры включений, возможности и скорости изменения показателей при модифицировании состава, выявления примесей и пр. Нередко они используются для точной классификации цветов, спектрального анализа. Из-за широкого диапазона возможностей спектрофотометры применяются в различных сферах:

  • полиграфии;
  • медицине;
  • химии;
  • биологии;
  • астрологии и т. д.

Чаще всего их устанавливают в исследовательских и промышленных лабораториях. Портативные устройства приобретают для полевых исследований, укомплектования мобильных пунктов анализа воздуха, воды, почвы и пр. Стационарные обладают большими габаритами, но значительной функциональностью, а потому отлично подходят для тех лабораторий, где регулярно проводят даже очень сложные исследования. При этом высокая скорость получения результатов позволяет внедрять их на производственные линии.

Практическое применение спектрофотометры находят в колорировании соответствующих составов для типографической деятельности, покраски автомобилей и различных предметов интерьера. Найти и приобрести нужную модель вы можете в нашем магазине. Опытные консультанты подберут вам отличный вариант под любой бюджет и задачи.

Отношений потоков. Обычно используется для измерения спектров пропускания или спектров отражения излучения. Спектрофотометр является основным прибором, используемым в спектрофотометрии .

Энциклопедичный YouTube

    1 / 1

    Введение в спектрофотометрию

Субтитры

В этом видеоуроке я хочу немного поговорить о спектрофотометрии. Запишу этот термин. «Спектрофотометрия» звучит довольно сложно, но на самом деле она основана на весьма простом принципе. Пусть у нас есть, скажем, два раствора, которые содержат некоторое растворенное вещество. Назовем первый раствором один, а другой -- раствором два. Предположим также, что наши мензурки имеют одинаковую ширину. Теперь пусть, скажем, раствор 1... Подпишу число 1 и число 2. Теперь скажем, что в растворе 1 меньше растворенного вещества. Это... это уровень воды. Итак, здесь меньше вещества. Пусть раствор будет желтым, или мы воспринимаем его желтым. Итак, здесь меньше вещества. Скажем, что в растворе номер 2 больше растворенного вещества. Итак, здесь больше. Я заштрихую его более плотно расположенными линиями. Концентрация растворенного вещества здесь выше. Подпишу: более высокая концентрация. Хорошо. А здесь более... более низкая концентрация. Теперь давайте подумаем о том, что произойдет, если мы направим свет через каждую из этих мензурок. Давайте просто предположим, что мы освещаем их светом с длиной волны, которая особенно чувствительна к веществу, которое мы там растворили. Я буду говорить пока в общем. Представим, что у меня есть некоторый свет определенной интенсивности. Давайте просто назовем ее падающей интенсивностью. Обозначим ее I0. Это определенная интенсивность. Что случится, когда свет выйдет с другой стороны этой мензурки? Некоторая его часть будет поглощена. Некоторая часть этого света на определенных частотах будет поглощена нашими маленькими молекулами внутри мензурки. И в результате будет меньше света на выходе с другой стороны. Особенно меньше на тех частотах, на которых эти молекулы в растворе будут поглощать свет. Таким образом, у вас будет меньше света, выходящего с другой стороны. Света... света будет меньше. Я обозначу его I1. Теперь в этой ситуации, если мы осветим раствор тем же количеством света, то есть I0. Это должна быть стрелка, не получилась. И то же количество света, то же значение I0. Если мы направим то же самое количество света в эту мензурку, такое же количество, ту же самую интенсивность света, то что произойдет? Эти специфические частоты света будут сильнее поглощаться, когда свет пройдет через эту мензурку. Просто он будет сталкиваться с большим числом молекул из-за того, что здесь более высокая концентрация. Свет, который выходит из раствора с более высокой концентрацией... Я обозначу его интенсивность I2. Здесь будет более низкая интенсивность прошедшего света, чем здесь. В этом случае I2 будет иметь низкую интенсивность и она будет меньше чем I1. Надеюсь, что это понятно. Эти световые фотоны, как можно себе представить, будут врезаться в большее число молекул. Они будут поглощаться большим числом молекул. Поэтому проходить их будет меньше по сравнению с теми вот здесь, из-за того что здесь концентрация меньше. Это также справедливо в том случае, если бы мензурка была толще. Смотрите. Нарисую другую мензурку. Другую мензурку, которая, например, в два раза шире... В два раза шире... и пусть в ней будет раствор с такой же концентрацией, как и в мензурке под номером 2. Мы присвоим ей номер 3. В ней та же концентрация, что и в номере 2. Я попытаюсь сделать ее максимально похожей на эту. И вы направили некоторое количество света сюда. В общем, вы хотите сосредоточиться на частотах, которые поглощаются наиболее сильно. Представьте, что вы светите тем же самым светом сюда. У вас тот же свет, который проходил насквозь, который выходит. Вот что фактически вы увидите. Итак, это I3 вот здесь, и что, вы думаете, будет происходить? Раствор с той же концентрацией, но этот свет прошел больший путь при такой же концентрации. И снова он будет сталкиваться с большим числом молекул и будет сильнее поглощаться. Таким образом, меньше света будет проходить. Итак, I2 меньше чем I1, а I3 вообще будет наименьшей. Если бы вы смотрели на проходящий свет, то здесь было бы меньше всего света, здесь было бы немного больше света, а здесь было бы больше всего света. Если вы бы посмотрели на него, если бы вы поместили ваш глаз вот сюда (это... это ресницы), вот сюда, то здесь вы бы увидели самый яркий свет. Здесь больше всего света попадает в ваш глаз. Здесь будет несколько более темный цвет, а здесь будет самый темный цвет. Это совершенно логично. Если вы что-нибудь растворите, если вы растворите небольшую порцию чего-то в воде, так чтобы она оставалась достаточно прозрачной. Если вы растворите большое количество некоторого вещества в воде, то она будет менее прозрачной. Если сосуд, в котором вы растворяете, или мензурка, которую вы взяли, существенно длиннее, то вода будет еще менее прозрачной. Надеюсь, это дает вам понимание спектрофотометрии. Итак, следующий вопрос: какая от этого польза? Почему это вообще меня волнует? Вообще-то вы могли бы на практике воспользоваться этой информацией. Вы могли бы посмотреть, как много света прошло по отношению к тому, как много вы направили, для того чтобы определить концентрацию раствора. Вот почему мы говорим об этом на уроке химии. Прежде, чем мы сделаем это (я покажу вам пример в следующем видеоуроке), позвольте мне дать определения некоторых терминов, касающихся методов измерения концентрации или способов измерения того, как много света прошло в зависимости от того, насколько много его было направлено. Первое понятие, которое я определю -- это коэффициент пропускания. Давайте запишем. Итак, люди, дававшие определение, сказали: «Знаете, нас интересует, сколько света прошло по сравнению с тем, сколько упало». Давайте определим коэффициент пропускания как отношение интенсивности, которая проходит... (В этом примере коэффициент пропускания раствора номер 1 будет интенсивностью, которая прошла, деленной на интенсивность, которая упала. Вот здесь коэффициент пропускания -- это интенсивность, которая вышла, деленное на интенсивность, которая упала. Как мы видим, это вот здесь будет меньшим числом. I2 меньше чем I1. Здесь будет меньший коэффициент пропускания, чем в растворе номер 1. Давайте назовем это коэффициент пропускания 2. Это коэффициент пропускания 3. Это свет, который выходит, который проходит, по отношению к свету, который падает. Это наименьшее число, за ним идет вот это, и за ним вот это. Итак, здесь у нас будет наименьший коэффициент пропускания. Здесь наименьшая прозрачность, за ней идет вот эта, за ней вот эта. Теперь еще один термин, который в какой-то степени является производным, но не в математическом смысле, он просто вытекает из пропускания, и мы увидим, что у него есть интересные свойства. Это оптическая плотность. Записываем. Здесь мы попытаемся определить, насколько хорошо вещество поглощает свет. Это является мерой того, насколько хорошо свет проходит. Большие числа говорят, что пропускание высокое. Но оптическая плотность показывает, насколько хорошо вещество поглощает. Так что это нечто противоположное. Если пропускание вещества хорошее, это означает, что оно поглощает плохо, т. е. оно не способно сильно поглощать. Если вещество поглощает хорошо, это означает, что оно пропускает плохо. Итак, оптическая плотность вот здесь. Она определяется как отрицательный логарифм коэффициента пропускания. Понятно? Этот логарифм берется по основанию 10. Или вы можете считать, что коэффициент пропускания, который вы уже определили как отрицательный логарифм от отношения света, который прошел... который прошёл, к свету... к свету, падающему на мензурку. Но наиболее простой способ -- это взять отрицательный логарифм от коэффициента пропускания. Если коэффициент пропускания является большим числом, то оптическая плотность малым числом, что логично. Если пропускается много света, то значение оптической плотности будет очень мало, это означает, что не поглощается практически ничего. Если коэффициент пропускания выражается малым числом, то это означает, что поглощается много. Так что это будет действительно большим числом. Это то, что дает нам отрицательный логарифм. Есть еще одна интересная вещь, относящаяся к этой теме. Это закон Бера-Ламберта, который вы могли бы проверить. Бера-Ламберта. Вообще-то мы будем использовать его в следующем видеоуроке, закон Бера-Ламберта. Вообще-то я не знаю историю открытия этого закона. Я уверен, что к нему имеет отношение некто по фамилии Бер (букв. пиво), я всегда представлял, что его первооткрыватель пропускал свет через пиво. Закон Бера-Ламберта говорит нам, что оптическая плотность пропорциональна... Я должен написать его так... Оптическая плотность пропорциональна... пропорциональна (это показывает, какое расстояние свет должен пройти в растворе)... Она пропорциональна длине пути, умноженной на концентрацию. Обычно мы используем молярность для выражения концентрации. Другими словами, можно сказать, что оптическая плотность равна некоторой константе, обычно обозначаемой малой буквой эпсилон вот так. И она зависит от раствора или исследуемого растворенного вещества, которое мы здесь имеем, температуры, давления и других подобных факторов. Она равна некоторой константе, умноженной на длину пути прохождения света в растворе и на концентрацию раствора. Позвольте мне пояснить сказанное. Эта величина вот здесь является концентрацией. Подпишу: концентрация. Причина, почему это очень полезно, состоит в том, что если у вас есть некоторый образец с известной концентрацией... Если есть какой-то образец с концентрацией, которая вам известна... Позвольте... позвольте мне нарисовать вот здесь вот. Это наша ось концентрации. Давайте подпишу. Мы измеряем ее в единицах... концентрация... Мы измеряем ее в единицах... в единицах молярности. Представим, что молярность начинается с нуля. Она принимает значения, ну, скажем, 0, 0,1; 0,2; 0,3 и так далее. Вот здесь вы измеряете оптическую плотность, по вертикальной оси. Вы измеряете оптическую плотность. Вот так. Теперь представим, что у вас есть некоторый раствор, и вы знаете концентрацию, вы знаете, что его молярная концентрация равна 0,1. Позвольте мне обозначить молярность буквой М. Вы измеряете его оптическую плотность и просто получаете здесь некоторое число. Итак, вы измеряете его оптическую плотность, и получаете его оптическую плотность. Это низкая концентрация, раствор слабо поглощает. Вы получаете, скажем, некоторое число здесь. Например, 0,25. И затем, допустим, вы берете другую известную концентрацию, ну, скажем, с молярностью 0,2. И вы говорите: «О, смотрите, здесь оптическая плотность равна 0,5». Позвольте мне отметить это другим цветом. Раствор имеет оптическую плотность вот здесь, равную 0,5. Я должен поставить 0 впереди: 0,5 и 0,25. Это говорит вам, что это линейная зависимость. Так что для любой концентрации оптическая плотность будет находиться на прямой. Если вы хотите небольшой экскурс в алгебру, то эпсилон в действительности будет характеризовать наклон этой прямой Эпсилон, умноженное на длину, будет наклоном. Я не хочу вас сильно запутать. Но важно уяснить, что у вас тут будет прямая. Вот она. Вот она... Причина ее полезности состоит в том, что вы можете использовать очень малую часть алгебры для нахождения уравнения прямой. Или вы можете просто посмотреть на нее в виде графика и сказать: «Окей, у меня были две известные концентрации, и была возможность определить оптическую плотность, потому что мне известна линейная зависимость, выражаемая законом Бера-Ламберта». Если бы вы просто продолжили проводить измерения, то все значения расположились бы вдоль этой прямой. Вы можете затем решать обратную задачу. Т. е. провести измерения для некоторой неизвестной концентрации. Вы могли бы определить ее оптическую плотность. Давайте представим, что имеется некоторая неизвестная концентрация, и вы определили, что ее оптическая плотность вот здесь. Скажем, 0,4, то есть раствор имеет оптическую плотность 0,4. Тогда вы можете просто перейти на эту прямую вот здесь, и вы скажете: «Отлично, тогда это должно быть концентрацией исследуемого вещества в численном выражении». Тогда вы могли бы измерить ее, или вы можете определить ее алгебраически. Так что это весьма близко к молярности 0,2 или чуть меньше чем молярность 0,2. Мы разберем практический пример в следующем видеоуроке. Subtitles by the Amara.org community

Применение

Спектрофотометры могут работать в различных диапазонах длин волн - от ультрафиолетового до инфракрасного . В зависимости от этого приборы имеют разное назначение.

Назначение

Основное назначение спектрофотометров в полиграфической отрасли - проведение точной линеаризации и калибровки процессов печати. Спектрофотометры предоставляют возможность проведения точечных и автоматизированных измерений для создания высококачественных ICC-профилей .

Конструкция

На рисунках приведены две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент отражения данного объекта относительно рабочего стандарта с известной спектральной характеристикой:

Спектральная разрешающая способность - безразмерная величина, равная отношению длины волны излучения к спектральному разрешению на этой длине волны .

Спектральный диапазон это диапазон в пределах которого может работать спектрофотометр. Для большинства случаев в полиграфии оценивается спектр светового излучения в видимом диапазоне длин волн от 380 до 730 нм. Для некоторых случаев бывает необходимым оценить ультрафиолетовую и инфракрасную составляющую излучения. Спектрофотометры измеряют только спектр излучения. Все остальные характеристики рассматриваются по спектральным данным.

Межприборная согласованность - это разброс измеряемых значений одного и того же образца, измеряемого с помощью эталонного и исследуемого прибора.

Повторяемость определяет точность измерений, которые осуществляются теми же операторами при нескольких измерениях одинаковыми приборами одних и тех же образцов.

ОБОРУДОВАНИЕ ДЛЯ ФОТОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ.

Для фотометрических измерений используют две большие группы приборов: фотоколориметры и спектрофотометры. В колориметрах нужные спектральные диапазоны выделяются при помощи светофильтров, ограничивающих участки спектра, в которых могут проводится измерения. В спектрофотометрах участки спектра выделяются при помощи призм или дифракционных решеток, что позволяет устанавливать любую длину волны в заданном диапазоне.

Конкретная последовательность операций при измерении оптической плотности или пропускания зависит от конструкции спектрофотометра или колориметра.

Однако основные принципы остаются неизменными. Сначала устанавливают необходимую длину волны, выбирая светофильтр на колориметре или вращая соответствующую рукоятку на спектрофотометре. Затем устанавливают нуль. Для этого в световой поток помещают кювету со стандартным раствором. Изменяя ширину щели, добиваются того, чтобы показания прибора соответствовали величине, предусмотренной инструкцией. На следующем этапе стандартный раствор заменяют исследуемым и производят отсчет величины оптической плотности или пропускания.

Современные спектрофотометры позволяют работать с высокомонохроматизированным потоком излучения. Они применяются для концентрационного анализа и при изучении спектров поглощения веществ.

Устройство и принцип действия спектрофотометра. Структурную схему спектрофотометра можно представить в виде следующих основных блоков:

источник света, монохроматор, кюветное отделение, фотоэлемент, регистрирующее устройство.

Световой пучок от источника света попадает в монохроматор через входную щель и разлагается дифракционной решеткой или призмой в спектр. В монохроматический поток излучения, поступающий из выходной щели в кюветное отделение, поочередно вводятся контрольный и исследуемый образцы. Излучение, прошедшее через кювету, попадает на фотоэлемент, который преобразовывает световую энергию в электрическую. Электрический сигнал затем усиливается и регистрируется.

Монохроматоры. Монохроматор – это оптическая система, выделяющая из всего спектра источника света излучение определенной длины волны. Это обычно призмы, по-разному преломляющие свет разных длин волн, или дифракционные решетки. В видимой области используются обычные стеклянные призмы, но в ультрафиолетовой области они не годятся, поскольку стекло начинает поглощать уже при λ < 400 нм, поэтому призмы делают из кварца.

В качестве монохроматоров применяются также дифракционные решетки, которые представляют собой плоскопараллельную пластину с нанесенными на ней параллельными линиями – бороздками. Белый свет из-за дифракции на параллельных бороздках разлагается на непрерывный спектр. Обычно в монохроматорах сначала выделяют пучок света с определенным диапазоном длин волн с помощью призмы, а затем разлагают его еще раз решеткой. Так получают строго монохроматический свет. Основное достоинство дифракционных решеток состоит в том, что можно увеличивать их разрешающую способность, поскольку она прямо пропорциональна плотности линий. Кроме того, во всем диапазоне длин волн дифракционные решетки имеют линейное разрешение, тогда как разрешение призменного монохроматора с увеличением длины волны уменьшается.



Кюветы. Исследуемое вещество растворяют в соответствующем растворе и помещают в оптически прозрачный сосуд для измерений – кювету. Обычно кюветодержатель имеет ячейки для четырех кювет. Поскольку стекло поглощает ультрафиолетовый свет, для проведения измерений в ультрафиолетовой области спектра используют кварцевые кюветы. Для измерений в видимой области можно использовать пластиковые или стеклянные кюветы. При работе с летучими или химически активными веществами кюветы закрывают крышками.

Поскольку кювета, помещенная в спектрофотометр, становится составной частью его оптической системы, с ней нужно обращаться очень аккуратно. Царапины и грязь на стенках кюветы сильно рассеивают и поглощают свет, искажая результаты измерений. Об этом особенно надо помнить при работе в ультрафиолетовой области. Кюветы можно протирать мягкими тканями, например, из хлопка. Не рекомендуется использовать для этих целей фильтровальную бумагу. Поскольку органические молекулы поглощают в ультрафиолетовой области, ни в коем случае нельзя касаться оптических (прозрачных) стенок кюветы. Раствор лучше заливать в кювету, поставив ее в предварительно вынутый из прибора кюветодержатель. Кюветы довольно хрупки, особенно кварцевые, поэтому работать с ними надо осторожно, не допуская механических повреждений.

Содержимое кюветы должно быть гомогенным – это необходимое условие получения воспроизводимых данных. Нужно следить за тем, чтобы раствор не был мутным. Особенно мешают измерениям пузырьки воздуха, сильно увеличивающие рассеяние. Нельзя наливать в кювету очень холодный раствор, поскольку при этом на наружных стенках кюветы конденсируются пары воды воздуха, и стенки становятся непрозрачными.

Если кюветы загрязнены посторонними примесями, их следует промыть дистиллированной водой и (или) растворителем, в котором растворено исследуемое вещество. Кюветы можно мыть мягкими детергентами. Не рекомендуется мыть кюветы концентрированными кислотами или щелочами, а также другими травящими агентами.

Кюветы нужно заполнять до такого уровня, чтобы поток излучения проходил целиком через слой раствора. Чаще всего используются кюветы с оптическим путем 1 см, в которые обычно заливают 2,5–3 мл раствора. В такие кюветы входит 4–5 мл, но заполняют их полностью лишь в том случае, когда это необходимо. Есть кюветы с оптическим путем 50, 20, 5, 2 и 1 мм.

Фотоэлементы. Фотоэлементы преобразовывают световую энергию в электрическую. Электрический сигнал затем усиливается и регистрируется.

Фотоны, бомбардируя поверхность фотоэлемента, выбивают из него электроны, количество которых пропорционально интенсивности света. Эти электроны летят к положительному электроду. В результате в замкнутой цепи возникает электрический ток, который регистрируется по падению напряжения на сопротивлении, находящемся в этой цепи. Напряжение можно усилить, и после компенсации такого сигнала потенциометром, отградуированном в единицах поглощения, на датчике регистрируется непосредственно поглощение образца.

Фотоумножители обычно более чувствительны, чем простые фотоэлементы.

Это происходит из-за того, что электроны, вылетевшие из фоточувствительного слоя, ускоряются высоким напряжением, а из-за соударений в газе возникают вторичные электроны, что и приводит к возрастанию тока.

Ширина щели. От размера щели зависит диапазон длин волн света, падающего на образец. Поэтому для получения надежных результатов надо работать при минимально узкой для данных условий эксперимента щели. Если щель выбрана правильно, то при изменении ее размеров вдвое показания прибора не меняются.

За последние 20 лет миниатюрные оптоволоконные спектрометры перестали быть чем-то необычным и превратились в рабочий инструмент большинства специалистов. Люди по достоинству оценили преимущество малых размеров в сочетании с изобилием аксессуаров для образцов.

Основной функцией спектрометра является регистрация и накопление спектра света, оцифровка полученного сигнала в зависимости от длины волны и последующий анализ с помощью ПК. На первом этапе свет, пройдя оптическое волокно, попадает в спектрометр, а именно, через узкую апертуру, известную как входная щель. Линза виньетирует свет на входе в спектрометр. В большинстве спектрометров рассеянный свет затем коллимируется с помощью вогнутого зеркала и направляется в дифракционную решетку. Решетка рассеивает компоненты спектра под слегка разными углами, которые затем фокусируются вторым вогнутым зеркалом на детекторе. В качестве альтернативы можно использовать вогнутую голографическую решетку для реализации всех трех функций спектрометра одновременно. Этот вариант имеет свои преимущества и недостатки, о которых речь пойдет далее.

Как только свет попадает на детектор, фотоны света преобразуются в электроны, которые затем через порт USB (или последовательный порт передачи данных) поступают в ПК. Программа производит интерполяцию сигнала в зависимости от количества пикселей в детекторе и линейной дисперсии дифракционной решетки для реализации калибровки, которая позволяет начертить график распределения по длинам волн в спектре. Затем эти данные можно использовать в многочисленных спектральных исследованиях, о некоторых из которых речь пойдет далее. В следующих разделах объясняется работа спектрометра и взаимодействие его компонентов. Сначала рассмотрим каждый компонент отдельно, чтобы разобраться в работе спектрометра, затем обсудим настройки и функционал. Мы также коснемся аксессуаров, которые делают применение спектрометра более эффективным.

Спектрометр. Часть 1. Щель

Общие сведения

Спектрометр представляет собой систему визуализации, распределяющую множество монохроматических изображений в плоскости детектора (через входную щель). От входной щели зависят рабочие характеристики спектрометра, поскольку она задает размер светового потока, попадающего на оптическую часть. От нее зависит спектральное разрешение, другими важными факторами также являются частота штрихов дифракционной решетки и размер пикселей детектора.

Оптическое разрешение и пропускная способность спектрометра полностью зависят от параметров щели. Свет попадает внутрь спектрометра через оптическое волокно или линзу, сфокусированную на с учетом настройки щели. От щели зависит угол расходимости попадающего внутрь света.

Щели могут иметь разную ширину - от 5мкм до 800мкм и более, высота щели составляет 1 мм (стандартно) - 2мм. Выбор размера входной щели - важный вопрос, так как она настраивается и устанавливается в спектрометре только квалифицированным специалистом.

В основном в спектрометрах применяются щели шириной 10, 25, 50, 100, 200 мкм и т.д. В системах, в которых применяются оптические волокна для подачи светового пучка, размер пакета волокон совпадает с размером входной щели. Обычно это снижает рассеяние света и повышает пропускную способность прибора.

Технические подробности

Основное назначение входной щели заключается в четком выделении объекта для размещения на оптическом столе. Размеры (ширина (Ws) и высота (Hs)) входной щели являются ключевым фактором, который влияет на пропускную способность спектрометра. От ширины изображения во входном отверстии зависит спектральное разрешение прибора, если он превышает ширину пикселя в детекторе. И пропускная способность, и разрешение спектрометра должны быть сбалансированы выбором правильной ширины входной щели.
Ширину изображения входной щели (Wi) можно рассчитать по формуле:

W i = (M 2 ? W s 2 +W o 2) 1/2 ,
Уравнение 1-1

где M представляет собой увеличение оптического стола в зависимости от соотношения фокусной длины фокусирующего зеркала и фокусной длины коллимирующего зеркала, W s - ширина входной щели и W о - увеличение изображения оптической частью. При соответствующем разрешении ширина входной щели должна быть как можно больше для увеличения пропускной способности спектрографа.

Для стандартного оптической схемы Черни-Тернера W o составляет примерно несколько десятков микрон, снижение ширины входной щели ниже указанного значения не приводит к существенному повышению разрешения спектрометра. Осевые оптические столы позволяют значительно снизить показатель W o , это обеспечивает более точное спектральное разрешение. Другим ограничивающим фактором для спектрального разрешения служит ширина пикселя (W p) детектора. Снижение показателя W i ниже W p не приводит к росту спектрального разрешения.

Часть 2. Дифракционная решетка

Общие сведения

Дифракционная решетка формирует спектр длин волн света и частично влияет на оптическое разрешение спектрометра. Правильный выбор дифракционной решетки является важным фактором для получения требуемых характеристик спектра при решении задач. От решетки зависит оптическое разрешение и эффективность распределения в спектре. Она имеет два параметра: частота штрихов решетки и угол блеска, о которых пойдет речь в данном разделе.

Применяются дифракционные решетки двух типов: нарезные и голографические решетки. Нарезные решетки состоят из большого количества параллельных штрихов, выполненных на поверхности, на которую наносится зеркальное покрытие. Голографические решетки создаются в результате интерференции двух УФ лазерных пучков (параллельных или непараллельных) на светочувствительном слое. Они отличаются стабильными спектральными характеристиками, но имеют более низкую эффективность.

Нарезные решетки - наиболее простые и недорогие материалы в производстве, но они довольно сильно рассеивают свет. Это происходит из-за неточности изготовления штрихов и частоты их нанесения. Поэтому в спектроскопии (например, УФ спектроскопии) детектор работает хуже и оптические характеристики получаются ниже. В подобном случае голографические решетки позволяют снизить эффект рассеяния света и повысить выходные характеристики спектрометра. Другим преимуществом голографической решетки является возможность простого ее создания на криволинейных поверхностях, это позволяет одновременно использовать решетку в качестве рассеивающего и фокусирующего элемента.

Частота штрихов решетки

Величина дисперсии зависит от количества штрихов, нанесенных в мм поверхности решетки. В основном этот параметр называют плотностью решетки или частотой (периодом). От частоты решетки зависит рабочий диапазон спектрометра и спектральное разрешение. Диапазон длин волн спектрометра обратно пропорционален дисперсии решетки благодаря фиксированной геометрии. Чем шире дисперсия, тем выше разрешение спектрометра. И, наоборот, более низкая частота решетки приводит к падению дисперсии и увеличению диапазона длин волн в ущерб его спектральному разрешению.

Например, спектрометр Quest™ X с частотой решетки 900 штр/мм имеет диапазон измерения длин волн, равный 370 нм, и оптическое разрешение (точность) менее 0,5 нм. Если выбран спектрометр Quest™ X с решеткой 600 штр/мм, его диапазон измерения длин волн составит 700 нм, а оптическое разрешение (точность) менее 1,0 нм. То есть с ростом диапазона волнового измерения снижается оптическая точность спектрометра.

Если требуется измерять широкий диапазон длин волн, т.е. λ max > 2λ min , оптические сигналы разных дифракционных порядков могут накладываться друг на друга на пластине детектора. Это становится очевидным, если посмотреть на уравнение для дифракционной решетки. В подобном случае для устранения нежелательного наложения сигналов, то есть для «сортировки по порядку», требуется линейный переменный фильтр (LVF).

В спектрометрах со штриховой дифракционной решеткой угловая дисперсия решетки описывается формулой:


Уравнение 2-1

где β представляет собой угол дифракции, d - период решетки (равен инверсии плотности штрихов), м - дифракционный порядок, λ - длина волны света, как показано на Рис. 2-1.


Рис. 2-1. Геометрия дифракции для плоской и вогнутой решеток

Учитывая фокусную длину (F) фокусирующего зеркала и принимая во внимание малую угловую аппроксимацию, уравнение 2-1 можно переписать как:


Уравнение 2-2

которое измеряет линейную дисперсию в нм/мм. Из линейной дисперсии максимальный спектральный диапазон (λ max - λ min) прибора можно рассчитать с учетом длины детектора (L D ), которая вычисляется умножением общего количества пикселей в детекторе (n ) на ширину одного пикселя (W p ):

Уравнение 2-3

На основании 2-3 становится очевидным, что максимальный спектральный диапазон прибора зависит от длины детектора (L D ), плотности штрихов (1/d ) и фокусного расстояния (F ).

Точность определения длины волны в дифракционной решетке определяется как:


Уравнение 2-4

где N - общее количество штрихов дифракционной решетки. Согласно теории ограниченной трансформации самая мельчайшая единица разрешения обратно пропорциональна количеству образцов. В основном, разрешение дифракционной решетки значительно выше разрешения самого спектрометра, поэтому дисперсия является лишь одним из многих факторов, определяющих спектральное разрешение прибора.

Следует отметить, что самая длинная волна, которая подвергается дифракции в решетке, составляет 2d , она представляет собой верхнее предельное значение спектрального диапазона решетки. Для ближнего ИК диапазона это ограничение максимальной длины волны может сказаться на максимальной частоте решетки, которую можно использовать в спектрометре.

Угол блеска

Поскольку дифракционная решетка преломляет полихроматический свет, она не имеет постоянную эффективность. Форма дифракционной кривой зависит в основном от угла решетки, который также известен как угол блеска. Это позволяет вычислить значение угла блеска, который соответствует максимальной эффективности - то есть так называемой цветовой длине волны. Данная концепция проиллюстрирована на Рис. 2-1, на котором сравниваются разные решетки частотой 150 штрихов/мм с углами блеска 500 нм, 1250 нм и 2000 нм.


Рис. 2-2 Сравнение эффективности решеток в зависимости от цветовой длины волны

Можно обеспечить высокую дифракционную эффективность (>85%), соответствующую определенной длине волны (цветовой). Это задается предельным значением спектрального диапазона спектрометра.

Чаще всего, цветовая длина волны дифракционной решетки смещена в зону низкой четкости спектрального диапазона с целью повышения общего соотношения сигнала к уровню шума (SNR) спектрометра.

Часть 3. Детектор

Общие сведения

Мы обсудили важность входной щели и дифракционной решетки при формировании спектрального изображения в плоскости изображения. В традиционных спектрометрах (монохроматорах) вторая щель размещена в плоскости изображения и называется выходной щелью.

Выходная щель имеет обычно аналогичные размеры, как и входная щель, а ширина последней является одним из факторов, ограничивающих спектральный диапазон прибора (как отмечено в части 1 материала). В этой конструкции детектор размещен за выходной щелью и решетка поворачивается для сканирования спектрального изображения через щель, поэтому интенсивность света является функцией длины волны.

В современных спектрометрах детекторы на линейных и ПЗС-матрицах являются следующим шагом развития спектрометров со штриховой решеткой. Поскольку случайный свет попадает на пиксели через ПЗС-матрицу, то каждый пиксель берет на себя часть спектра, который электронная система прибора может преобразовать и отобразить с помощью программного обеспечения. Это преимущество позволяет конструировать спектрометры без подвижных компонентов, что приводит к сокращению размеров и энергопотребления. Применение компактных многоэлементных детекторов - это резкое сокращение затрат, компактные размеры спектрометров, которые получили название «миниатюрные спектрометры».

Типы детекторов

Фотодетекторы можно классифицировать по разным признакам, основным из них является материал, из которого выполнен детектор. В миниатюрном спектрометре находят применение два наиболее распространенных полупроводниковых материала - Si и InGaAs. Важно выбрать правильный материал детектора при подборе спектрометра, так как ширина запрещенной энергетической зоны (E gap ) полупроводника определяет верхний предел длины волны (λ max ) согласно следующему выражению:


Уравнение 3-1

где h - постоянная Планка, c-скорость света. Постоянную Планка и скорость света можно выразить как 1240 эВ·нм или 1,24 эВ·нм для простоты перехода от энергии к длине волны. Например, ширина запрещенной зоны Si равна 1,11 эВ, что соответствует максимальной длине волны 1117,117 нм.

InGaAs, с другой стороны, представляет собой соединение InAs и GaAs, которые имеют ширину запрещенной зоны, равную 0,36 эВ и 1,43 эВ соответственно. Поэтому в зависимости от содержания In и Ga в материале данный показатель может иметь промежуточное значение. Однако, по ряду причин In и Ga нельзя смешивать в произвольном количестве, поэтому значение 1,7 мкм (или 0,73 эВ) является стандартным показателем для детекторов InGaAs. Также можно использовать матрицу InGaAs, которая способна работать с разрешением 2,2 мкм или 2,6 мкм, но подобные детекторы гораздо дороже и более шумные по сравнению с традиционными детекторами на основе InGaAs.

Нижний предел работы материала определить сложнее, так как он зависит от особенности поглощения света полупроводниковым материалом и поэтому может варьироваться в широких пределах в зависимости от толщины детектора. Другим общепринятым методом снижения предела включения детектора является флуоресцентное покрытие на окне детектора, которое будет поглощать фотоны высокой энергии и излучать фотоны более низкой энергии, определяемые датчиком. На Рис. 3-1 показано сравнение функции обнаружения детектора (D*) в зависимости от длины волны для матриц на основе Si (ПЗС) и InGaAs.


Рис. 3-1 Аппроксимация D* в зависимости от длины волны в стандартных детекторах

CCD, BT-CCD и PDA матрицы

В настоящее время детекторы InGaAs существуют только в одном исполнении, а вот многоэлементные детекторы Si имеют три типа конструкции: приборы с зарядной связью (CCD или ПЗС), ПЗС просветленного типа (BT-CCD), фотодиодные матрицы (PDA).

Технология ПЗС позволяет создавать детекторы с малыми размерами пикселей (~14 мкм), это устраняет необходимость в прямом считывании сигнала от каждого пикселя. Здесь заряд передается от одного пикселя к другому, что позволяет считывать всю информацию из матрицы с одного пикселя. Можно создать бюджетный ПЗС, который является идеальным решением для большинства миниатюрных спектрометров, но ПЗС имеют два недостатка. Во-первых, передний шлюз ПЗС может стать причиной рассеяния случайного светового потока. Во-вторых, для ПЗС требуется относительно большая подложка из P-Si, позволяющая снизить затраты на производство. Но это также ограничивает и эффективность самого детектора (прежде всего при работе в диапазоне коротких волн) за счет поглощения через слой P.

Для устранения этих двух недостатков применяется более высокая чувствительность, в этом случае BT-CCD (ПЗС просветленного типа) является идеальным решением. BT-CCD получается травлением подложки P-Si ПЗС до толщины примерно 10мкм. В результате этого значительно сокращается поглощение и увеличивается эффективность детектора. Данный процесс также позволяет подсвечивать детектор с обратной стороны (P-Si), это исключает негативное влияние переднего шлюза детектора. На Рис. 3-2 представлено сравнение эффективности традиционного ПЗС детектора и детектора BT-CCD с обратной подсветкой.


Рис. 3-2 Квантовая эффективность ПЗС детектора и детектора на просветленной ПЗС

Но помимо безоговорочных преимуществ матриц BT-CCD в спектроскопии также следует отметить два важных недостатка. Прежде всего, травление увеличивает затраты на производство и, во-вторых, (поскольку детектор получает очень тонким) может возникнуть эффект наложения в результате отражения от передней и задней поверхностей детектора. Эти явления, связанные с конструкцией BT-CCD, можно устранить путем глубокого обеднения, но это приводит к росту стоимости производства.

PDA детекторы являются более традиционными линейными приборами, которые состоят из фотодиодов, распределяемых по линии с использованием CMOS (КМОП) технологии. Эти детекторы не имеют малых пикселей и не отличаются высокой чувствительностью, но обладают рядом преимуществ перед ПЗС и BT-CCD. Во-первых, отсутствие в передаче заряда устраняет необходимость в наличии переднего шлюза детектора и значительно увеличивает скорость считывания. Вторым преимуществом детекторов PDA является глубина ячейки, которая значительно превышает показатель для ПЗС; типичный детектор PDA имеет глубину ~156,000,000e- по сравнению с ~65,000e- для стандартного ПЗС детектора. Чем больше глубина ячейки детектора PDA, тем шире динамический диапазон (~50,000:1), а также линейность сигнала. Это свойство делает детекторы PDA идеальным инструментом для применения в тех случаях, когда требуется выбирать малые заряды в крупных сигналах, например, при мониторинге СИД.

Шум в детекторе

Основной источник шума расположен в матрице детектора, речь идет о шуме при считывании, шуме при ударе, помехах при затемнении и шуме с постоянным спектром.

Шум при считывании является следствием электронного шума на выходе детектора и применяемой схематики и определяет пределы работы спектрометра.

Ударный шум связан с статистической вариацией количества фотонов, падающих на детектор, который подчиняется Пуассоновскому распределению. Поэтому ударный шум пропорционален квадратному корню фотонного потока.

Шум при затемнении обусловлен статистическими изменениями в величине электронов, которые возникают при затемнении (отсутствии падающего на детектор света). Фотодетектор выдает слабый сигнал даже при отсутствии освещения (падающего света). Этот эффект называют темновым током или сигналом при затемнении. Темновой ток обусловлен тепловым перемещением электронов и в основном зависит от средней температуры окружающего воздуха. По аналогии с ударным шумом данный вид помех также подчиняется распределению Пуассона, поэтому шум при затемнении пропорционален квадратному корню темнового тока.

Шум с постоянным спектром является результатом вариации анизотропного фотоотклика соседних пикселей. Она обусловлена вариацией квантовой эффективности пикселей, разными апертурами и толщиной пленки и увеличивается во время обработки.

Суммарный шум детектора равен сумме квадратных корней всех четырех источников шума.

TE охлаждение

Охлаждение детектора встроенным термоэлектрическим (TE) охлаждением является эффективным способом снижения шума при затемнении, а также расширения динамического диапазона и пределов обнаружения сигнала. Для детекторов на основе Si темновой ток удваивается, если температура повышается примерно на 5 - 7 °C и сокращается вполовину при снижении температуры на 5 - 7°C.

На Рис. 3-3 показан шум при затемнении для неохлаждаемого и охлаждаемого ПЗС-детектора в течение времени интегрирования, равного 60 секундам. При работе в условиях комнатных температур шум при затемнении почти полностью рассеивается неохлаждаемым детектором ПЗС. Как только ПЗС охлаждается до 10°C, темновой ток снижается примерно в четыре раза, а шум при затемнении падает в два раза. Это позволяет ПЗС работать в течение длительного времени интегрирования с целью определения слабых оптических сигналов. Если спектрометр на основе ПЗС-матрицы работает в устройствах со слабым освещением, например, для регистрации СИД, снижение уровня шума благодаря ТЕ охлаждению имеет минимальное значение вследствие относительно короткого времени интегрирования.


Рис. 3-3 Темновой ток для охлаждаемого и неохлаждаемого ПЗС детектора (время интегрирования = 60 секунд)

Как правило, если время интегрирования спектрометра ПЗС ниже 200 мс, детектор работает в состоянии ограниченной шумности. Поэтому шум в результате охлаждения TE снижается незначительно, но температурное регулирование в этих условиях будет полезным для поддержания основной линии в течение длительного периода времени.

Часть 4. Оптическая схема

Общие сведения

Как указано в части 1, спектрометр представляет собой систему получения изображений, которая распределяет множество монохроматических изображений, полученных через входную щель, на плоскость детектора. В предыдущих трех разделах мы обсудили основные компоненты спектрометра: входную щель, дифракционную решетку, детектор. В данном разделе объясняется работа всех трех компонентов совместно с разными оптическими элементами в системе. Эта система называется спектрографом. Вариантов оптических схем довольно много, наибольшее распространение получили следующие из них: кросс-корреляционная схема Черни-Тернера, развернутая модель Черни-Тернера и вогнутые спектрографы (см. рис. 4-1, 4-2 и 4-3 соответственно).


Рис. 4-1 Кросс-корреляционная схема спектрографа Черни-Тернера

Кросс-корреляционная схема состоит из двух вогнутых зеркал и одной дифракционной решетки, как показано на рис. 4-1. Фокусное расстояние зеркала 1 выбирается таким образом, что оно коллмирует пучок света из входной щели и направляет его на дифракционную решетку. После того, как свет разложен на отдельные компоненты, зеркало 2 фокусирует рассеянный свет дифракционной решеткой в плоскость детектора.

Данная модель представляет собой компактный и удобный спектрограф. Для дифракционной решетки с угловым значением дисперсии фокусное расстояние двух зеркал можно изменять для получения разных значений линейной дисперсии. Это определяет спектральный диапазон, чувствительность и разрешение системы. Оптимальная геометрия кросс-корреляционной схемы спектрографа может создавать рассеянное спектральное поле и нормальную точность измерений. Но из-за неосевой геометрии оптическая схема Черни-Тернера выдает значительное отклонение в расположении изображения, которое способно увеличить ширину изображения из входной щели на несколько десятых микрон. Оптическая схема Черни-Тернера в основном используется для спектрометров с малым и средним разрешением. Несмотря на то, что данная конструкция не предназначена для двумерного изображения, применение асферических зеркал (например, тороидальных) вместо сферических может обеспечить определенную степень коррекции сферической аберрации и астигматизма.

Для снижения аберрации изображения оптическая схема Черни-Тернера в основном спроектирован с фокальным числом (f/# ) >3, которое, в свою очередь, задает предел пропускной способности. Фокальное число оптической системы выражает диаметр входного зрачка с точки зрения эффективности фокусной длины. Оно определяется как f/# = f/D , где f представляет собой фокусную длину оптической линзы и D выражает диаметр элемента. F-номер используется для характеристики световой силы оптической системы. Математическая соотношение фокального числа и другого важного оптического показателя - цифровой апертуры (NA ) выражается следующим образом: f/# = 1/(2·NA ), где NA цифровая апертура оптической системы - безразмерная величина, которая характеризует диапазон значений углов, под которыми система может принимать или испускать свет.

Относительно высокое значение f/# Черни-Тернера по сравнению со стандартным мульти-модовым волокном (NA ≈ 0,22 ) может стать причиной весьма высокого рассеяния света. Простым и недорогим способом устранения этого нежелательного явления служит разворот оптической схемы, как показано на рис. 4-2. Это позволяет поместить «блоки пучка» в оптический канал, снижая рассеяние света. В результате этого снижается оптический шум в системе. Это решение не приводит к искажению видимого или ближнего ИК спектров, в которых сигнал имеет максимальное значение и достигается высокая квантовая эффективность, но может стать причиной искажения средних и слабых сигналов УФ-диапазона. Это делает спектрограф Черни-Тернера отличным решением для работы в УФ спектре, когда компактность является решающим фактором.


Рис. 4-2 Развернутый спектрограф Черни-Тернера

Вогнутая голографическая решетка

Третьим наиболее распространенным вариантом оптического стола служит аберрационно-исправленная вогнутая голографическая решетка (CHG). Она используется как рассеивающий и фокусирующий элемент одновременно, это приводит к снижению количества используемых оптических элементов в системе. Подобное решение повышает эффективность спектрографа, увеличивая его пропускную способность и надежность. Голографические решетки способны корректировать аберрации изображений в сферической зоне спектрометров Черни-Тернера на заданной длине волны, с ослаблением действия в широком спектральном диапазоне.


Рис. 4-3 Вогнутый голографический спектрограф

По сравнению со штриховой решеткой голографическая решетка обеспечивает более чем 10-кратное снижение рассеяния света, которое позволяет минимизировать интерференцию из-за нежелательных явлений. Штриховая дифракционная решетка создается специальной установкой, которая нарезает штрихи в покрытии подложки решетки (зачастую стекло покрыто тонким отражающим слоем) с использованием инструмента с алмазным наконечником.

Голографическая дифракционная решетка производится с помощью фотолитографической техники, в которой применяется голографическая интерференция. Штриховая дифракционная решетка в процессе производства всегда имеет какие-либо дефекты, которые включают периодически возникающие ошибки, неточности в нанесении штрихов. Все это приводит к росту рассеяния света и раздваиванию изображения (неправильные спектральные линии, вызванные периодическими ошибками). Оптическая методика используется для производства голографических дифракционных решеток и вызывает появление периодических ошибок и других неточностей. Поэтому голографические решетки значительно снижают рассеяние света (обычно в 5-10-раз ниже по сравнению со штриховыми решетками) и удаляют раздваивание.

Штриховые решетки в основном выбираются, если используется низкая частота решетки, ниже чем 1200 штр/мм. Если частота решетки высокая, то для снижения рассеяния света необходимы вогнутые решетки, в подобном случае голографические решетки являются самым оптимальным выбором. Важно помнить о том, что максимальная дифракционная эффективность голографических решеток примерно ~35% по сравнению со штриховыми решетками, эффективность которых достигает ~80%.

Часть 5. Спектральное разрешение

Общие сведения

Одной из важнейших характеристик спектрометра является спектральное (оптическое) разрешение. Спектральное разрешение системы определяет максимальное количество спектральных пиков, которые спектрометр может определить. Например, если спектрометр имеет диапазон 200 нм и спектральное разрешение 1 нм, система способна определить до 200 длин волн (пиков) в спектре.

В дисперсионных спектрометрах существует три ключевых фактора, которые определяют спектральный диапазон устройства: входная щель, дифракционная решетка, детектор. От щели зависит минимальный размер изображения, который оптический стол может сформировать в плоскости детектора. Дифракционная решетка определяет суммарный спектральный диапазон. Детектор определяет максимальное количество и размер неярких точек, которые можно оцифровать в виде спектра.

Следует помнить о том, что наблюдаемый сигнал (S o ) зависит не только от спектрального разрешения (R ) спектрометра, но и от длины волны сигнала (S r ). В результате этого наблюдаемое разрешение представляет собой искажение (измененное значение) от двух источников:

Уравнение 5-1

Если частотный диапазон сигнала значительно шире спектрального разрешения, то данный эффект можно не учитывать и считать, что измеренное разрешение соответствует разрешению сигнала. И, наоборот, если диапазон частот сигнала значительно меньше разрешения спектрометра, то наблюдаемый спектр ограничен только разрешением спектрометра.

Для решения большинства задач следует допустить, что вы работаете с одним из этих вариантов, но в определенных ситуациях, например, в рамановской спектроскопии высокого разрешения, искажение игнорировать нельзя. Например, если спектрометр имеет спектральное разрешение ~3 см -1 , лазер выдает излучение шириной ~4 см -1 , то наблюдаемый сигнал будет иметь ширину ~5 см -1 , так как спектральные разрешения близки к друг другу (распределение Гаусса).

По этой причине, при измерении спектрального разрешения спектрометра следует понимать, что измеренный сигнал значительно уже и измерение имеет ограниченное разрешение. Это обычно решается применением эмиссионной лампы низкого давления, например, с содержанием паров Hg или Ar, так как частотный диапазон таких источников обычно существенно уже, чем спектральное разрешение спектрометра с дисперсионной решеткой. Если требуется более узкое разрешение, можно использовать лазер, работающий на одном режиме.

После получения данных от лампы низкого давления спектральное разрешение измеряется на полуширине (FWHM) процента пика.

При расчете спектрального разрешения (δλ ) спектрометра следует учитывать: ширину щели (W s ), спектральный диапазон спектрометра (Δλ ), ширину пикселя (W p ) и количество пикселей детектора (n ). Важно помнить о том, что спектральное разрешение определяется как полуширина FWHM. Грубой ошибкой при расчете спектрального разрешения является заключение о том, что для определения пикового значения FWHM требуется минимальное количество пикселей, поэтому спектральное разрешение (в предположении W s = W p ) равно троекратному разрешению пикселей (Δλ/n ). Данное соотношение можно расписать для получения параметра, известного как фактор разрешения (RF ), который определяется по отношению ширины щели к ширине пикселя. Если W s ≈ W p , то фактор разрешения равен 3. Если W s ≈ 2W p , то фактор разрешения снижается до 2,5 и продолжает снижаться до тех пор, пока не будет соблюдаться соотношение W s > 4W p , в этом случае фактор разрешения достигает значения 1,5.

Все вышесказанное можно подытожить уравнением:


Уравнение 5-2

Например, если в спектрометре используется щель размером 25 мкм, 14 мкм, 2048-пиксельный детектор и спектральный диапазон составляет 350-1050 нм, то расчетное разрешение равно 1,53 нм.

Часть 6. Выбор оптического волокна

Общие сведения

При настройке спектрометра на выполнение работы важным является правильный выбор оптического волокна. Несмотря на наличие множества факторов, влияющих на данный выбор, следует обратить внимание на два ключевых параметра: диаметр волновода и поглощение света. Рассмотрим оптическое волокно и его применение в спектрометре. Затем обсудим обе характеристики, отмеченные выше, и их влияние на пропускную способность оптического волокна.

Технические характеристики

Оптическое волокно называют «световодом». Световоды напоминают собой водопроводные трубы, по которым вода перетекает из водонапорной станции в дом. Световод не освещает пространство вокруг, как лампочка в ванной комнате или кухне, поскольку в световоде наблюдается эффект полного отражения света.

Чтобы понять это, следует рассмотреть такое оптическое свойство, как преломление. Оно зависит от скорости света и материала, через который проходит свет. При перемещении света из одной оптической среды в другую среду, его скорость снижается относительно поверхности разделения сред.

Сила преломления рассчитывается как:


Уравнение 6-1

где n представляет собой коэффициент преломления, v - скорость света в среде, c - скорость света в вакууме. Например, коэффициент преломления воздуха равен 1,000293, он показывает, что скорость света в воздухе почти точно соответствует скорости света в вакууме, а коэффициент преломления в воде равен 1,333, свет перемещается в воде 25% медленнее, чем в вакууме.

Соотношение между коэффициентом преломления и углом падения света определяется по закону Снеллиуса:

Уравнение 6-2

Из данного уравнения следует, что угол преломления света (θ 2 ) зависит от соотношения коэффициентов двух материалов (n 1 /n 2 ), а также угла падения света (θ 1 ). В результате этого, меняя соотношение коэффициентов, можно добиться такого угла преломления, при котором весь падающий свет отражается от поверхности разделения сред (без выхода за пределы среды). Данное явление называется внутренним отражением и именно оно используется в световоде.

На рис. 6-1 показана конструкция волокна, которая обеспечивает полное внутреннее отражение с использованием двух типов стекол. Более низкий коэффициент применяется в оболочке, а более высокий коэффициент в световоде. Это позволяет собирать свет в одном месте и перемещать его в другое, поэтому оптические волокна являются идеальным решением для подачи света в спектрометр.


Рис. 6-1 Общее внутреннее преломление света в оптическом волокне

Поскольку весь свет проходит через световод, его диаметр влияет на светопередачу. Интуитивно понятно, что чем шире диаметр световода, тем выше чувствительность и соотношение «сигнал-уровень шума» спектрометра. Поскольку это утверждение верно до определенной степени, то имеются и другие ограничивающие факторы, которые следует рассмотреть при выборе оптического волокна.

Во-первых, необходимо обратить внимание на высоту пикселя детектора. Как показано в предыдущих разделах, оптический стол спектрометра предназначен для формирования изображения входной щели на плоскости детектора. Если пиксели детектора имеют высоту 200 мкм, можно выбрать волокно с диаметром световода 400 мкм, 50% падающего на детектор света теряется. В данном случае, нет преимуществ от применения более широкого световода, но существует способ избежать этого добавлением цилиндрической линзы в оптический стол перед детектором.


Рис. 6-2 Интенсивность сигнала в зависимости от диаметра световода и установки цилиндрической линзы

Цилиндрическая линза фокусирует изображение входной щели на оси, перпендикулярной к матрице без искажений изображений вдоль оси и параллельно матрице на плоскости детектора. Это позволяет свету через волокно падать на пиксели детектора, повышая чувствительность всей настройки. Рис. 6-2 показывает, что данный метод эффективен в отношении волокон диаметром до 600 мкм.

Поглощение света

Другим важным фактором служит поглощение света оптическим волокном. Если свет поглощается волокном, он не будет определен спектрометром.

При стандартном процессе производства оптических волокон ионы OH- случайно проникают в волоконное стекло через плазменные горелки, которые необходимы для смягчения сосуда, в этом случае его можно ввести в волокно. Присутствие данных ионов в волокне создает очень сильный эффект поглощения в диапазоне ближнего ИК, который может существенно ухудшить результаты измерения в данной области излучения. Во избежание этого при использовании волокон в спектроскопии ближнего ИК, они должны производиться с использованием специальных горелок с малым показателем ОН.


Рис. 6-3 Сравнение стандартного оптического волокна и волокна с малым содержанием ионов ОН в спектроскопии ближнего ИК

В спектре УФ присутствует довольно сильное поглощение. Это свойство связано с фотохимическим эффектом, известным как инсоляция, который ухудшает качество измерений в диапазоне УФ, особенно ниже 290 нм.

По этой причине чрезвычайно важно обратить особое внимание при выборе волокна для решения специальных задач. При работе в спектре ближнего ИК необходимо убедиться в том, что волокна имеют малое содержание ионов OH (их также называют ближнего ИК-волокнами). При работе в видимом спектре излучения и в спектре УФ применяют стандартные оптические волокна, которые называются УФ-волокнами. При работе в глубоком диапазоне УФ (< 290 нм) требуются волокна с высоким сопротивлением инсоляции, их называют SRUV-волокнами.