Инструментальные средства разработки программного обеспечения. Разработка программного обеспечения Инструментальные средства оформления и документирования алгоритмов программ

Сущность и понятие инструментального программного обеспечения

Инструментальное программное обеспечение (ИПО) - программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ.

Применяется инструментальное обеспечение в фазе разработки. Инструментальное программное обеспечение - это совокупность программ, используемых для помощи программистам в их работе, для помощи руководителям разработки программного обеспечения в их стремлении проконтролировать процесс разработки и получаемую продукцию. Наиболее известными представителями этой части программного обеспечения являются программы трансляторов с языков программирования, которые помогают программистам писать машинные команды. Инструментальными программами являются трансляторы с языков Фортран, Кобол, Джо-виал, Бейсик, АПЛ и Паскаль. Они облегчают процесс создания новых рабочих программ. Однако трансляторы с языков это только наиболее известная часть инструментальных программ; существует же их великое множество.

Использование вычислительных машин для помощи в создании новых программ далеко не очевидно для людей, не являющихся профессиональными программистами. Часто же бывает так, что профессионалы рассказывают об инструментальном (фаза разработки) и системном (фаза использования) программном обеспечении на едином дыхании, предполагая, что не посвященному в тайны их мастерства известно об этой роли инструментального программного обеспечения. Так же как и в фазе использования (для прикладных программ), системное обеспечение работает и в фазе разработки, но только совместно с инструментальным обеспечением. Инструментальное ПО или системы программирования - это системы для автоматизации разработки новых программ на языке программирования.

В самом общем случае для создания программы на выбранном языке программирования (языке системного программирования) нужно иметь следующие компоненты:

1. Текстовый редактор для создания файла с исходным текстом программы.

2. Компилятор или интерпретатор. Исходный текст с помощью программы-компилятора переводится в промежуточный объектный код. Исходный текст большой программы состоит из нескольких модулей (файлов с исходными текстами). Каждый модуль компилируется в отдельный файл с объектным кодом, которые затем надо объединить в одно целое.

3. Редактор связей или сборщик, который выполняет связывание объектных модулей и формирует на выходе работоспособное приложение - исполнимый код.

Исполнимый код - это законченная программа, которую можно запустить на любом компьютере, где установлена операционная система, для которой эта программа создавалась. Как правило, итоговый файл имеет расширение.ЕХЕ или.СОМ.

В последнее время получили распространение визуальный методы программирования (с помощью языков описания сценариев), ориентированные на создание Windows-приложений. Этот процесс автоматизирован в средах быстрого проектирования. При этом используются готовые визуальные компоненты, которые настраиваются с помощью специальных редакторов.

Наиболее популярные редакторы (системы программирования программ с использованием визуальных средств) визуального проектирования:

Borland Delphi - предназначен для решения практически любых задачи прикладного программирования.

Borland C++ Builder - это отличное средство для разработки DOS и Windows приложений.

Microsoft Visual Basic - это популярный инструмент для создания Windows-программ.

Microsoft Visual C++ - это средство позволяет разрабатывать любые приложения, выполняющиеся в среде ОС типа Microsoft Windows

Таким образом, сущность инструментального программного обеспечения заключается в создании любой исполняемой программы, путем преобразования формально логических выражений в исполняемый машинный код, а также его контроль и корректировка.

Задачи и функции инструментального программного обеспечения

Для инструментального программного обеспечения, как особой разновидности программного обеспечения, характерны общие и частные

функции, как и для всего программного обеспечении в целом. Общие функции рассмотрены нами выше, а специализированными функциями, присущими только данному типу программ, являются:

1. Создание текста разрабатываемой программы с использованием специально установленных кодовых слов (языка программирования), а также определенного набора символов и их расположения в созданном файле - синтаксис программы.

2. Перевод текста создаваемой программы в машинно-ориентированный код, доступный для распознавания ЭВМ. В случае значительного объема создаваемой программы, она разбивается на отдельные модули и каждый из модулей переводится отдельно.

3. Соединение отдельных модулей в единый исполняемый код, с соблюдением необходимой структуры, обеспечение координации взаимодействия отдельных частей между собой.

4. Тестирование и контроль созданной программы, выявление и устранение формальных, логических и синтаксических ошибок, проверка программ на наличие запрещенных кодов, а также оценка работоспособности и потенциала созданной программы.

Виды инструментального программного обеспечения

Исходя из задач, поставленных перед инструментальным программным обеспечением, можно выделить большое количество различных по назначению видов инструментального программного обеспечения:

Текстовые редакторы

Интегрированные среды разработки

Компиляторы

Интерпретаторы

Линковщики

Парсеры и генераторы парсеров (см. Javacc)

Ассемблеры

Отладчики

Профилировщики

Генераторы документации

Средства анализа покрытия кода

Средства непрерывной интеграции

Средства автоматизированного тестирования

Системы управления версиями и др.

Следует отметить, что оболочки для создания прикладных программ создаются также инструментальными программами и поэтому могут быть отнесены к прикладным программам. Рассмотрим кратко назначения некоторых инструментальных программ.

Текстовые редакторы.

Текстовый редактор - компьютерная программа, предназначенная для обработки текстовых файлов, такой как создание и внесение изменений.

Состав САПР

САПР - система, объединяющая технические сред­ства, математическое и программное обеспечение, пара­метры и характеристики которых выбирают с максималь­ным учетом особенностей задач инженерного проектиро­вания и конструирования. В САПР обеспечивается удоб­ство использования программ за счет применения средств оперативной связи инженера с ЭВМ, специальных проб­лемно-ориентированных языков и наличия информаци­онно-справочной базы.

Структурными составными составляющими САПР яв­ляются подсистемы, обладающие всеми свойствами систем и создаваемые как самостоятельные системы. Это выделенные по некоторым признакам части САПР, обеспечиваю­щие выполнение некоторых законченных проектных задач с получением соответствующих проектных решений и проектных документов.

По назначению подсистемы САПР разделяют на два вида: проектирующие и обслуживающие.

К проектирующим относятся подсистемы, выполняю­щие проектные процедуры и операции, например:

· подсистема компоновки машины;

· подсистема проектирования сборочных единиц;

· подсистема проектирования деталей;

· подсистема проектирования схемы управления;

· подсистема технологического проектирования.

К обслуживающим относятся подсистемы, предназна­ченные для поддержания работоспособности проектирую­щих подсистем, например:

· подсистема графического отображения объектов про­ектирования;

· подсистема документирования;

· подсистема информационного поиска и др.

В зависимости от отношения к объекту проектирования различают два вида проектирующих подсистем:

· объектно-ориентированные (объектные);

· объектно-независимые (инвариантные).

К объектным подсистемам относят подсистемы, выпол­няющие одну или несколько проектных процедур или операций, непосредственно зависимых от конкретного объекта проектирования, например:

· подсистема проектирования технологических систем;

· подсистема моделирования динамики, проектируемой конструкции и др.

К инвариантным подсистемам относят подсистемы, выполняющие унифицированные проектные процедуры и операции, например:

· подсистема расчетов деталей машин;

· подсистема расчетов режимов резания;

· подсистема расчета технико-экономических показа­телей и др.

Процесс проектирования реализуется в подсистемах в виде определенной последовательности проектных про­цедур и операций. Проектная процедура соответствует части проектной подсистемы, в результате выполнения которой принимается некоторое проектное решение. Она состоит из элементарных проектных операции, имеет твердо установленный порядок их выполнения и направ­лена на достижение локальной цели в процессе проекти­рования. Под проектной операцией понимают условно Выделенную часть проектной процедуры или элементар­ное действие, совершаемое конструктором в процессе проектирования. Примерами проектных процедур могут служить процедуры разработки кинематической или ком­поновочной схемы станка, технологии обработки изделий и т. п., а примерами проектных операций - расчет при­пусков, решение какого-либо уравнения и т. п.

Структурное единство подсистем САПР обеспечивается строгой регламентацией связей между различными ви­дами обеспечения, объединенных общей для данной под­системы целевой функцией. Различают следующие виды обеспечения:

· методическое обеспечение - документы, в которых отражены состав, правила отбора и эксплуатации средств автоматизации проектирования;

· лингвистическое обеспечение - языки проектирова­ния, терминология;

· математическое обеспечение - методы, математические модели, алгоритмы;

· программное обеспечение - документы с текстами про­грамм, программы на машинных носителях и эксплуата­ционные документы;

· техническое обеспечение - устройства вычислитель­ной и организационной техники, средства передачи дан­ных, измерительные и другие устройства и их сочетания;

· информационное обеспечение - документы, содержа­щие описание стандартных проектных процедур, типовых проектных решений, типовых элементов, комплектующих изделий, материалов и другие данные;

· организационное обеспечение - положения и инструк­ции, приказы, штатное расписание и другие документы, регламентирующие организационную структуру подраз­делений и их взаимодействие с комплексом средств авто­матизации проектирования.

· 64 CALS-технологии .

CALS-технологии служат средством, интегрирующим промышленные автоматизированные системы в единую многофункциональную систему. Целью интеграции автоматизированных систем проектирования и управления является повышение эффективности создания и использования сложной техники.

В современных условиях становления глобального информационного общества роль информации и информационных технологий в подготовке будущего специалиста значительно возрастает. В ближайшем будущем стратегический потенциал общества будут составлять не энергетические ресурсы, а информация и научные знания. Информация становится главным ресурсом научно-технического и социально-экономического развития общества, существенно влияет на ускоренное развитие науки, техники и различных отраслей производства, играет значительную роль в процессе модернизации образования. Ценностно-смысловая характеристика образования в вузе и профессиональная деятельность специалистов должна выражаться в формировании интеллектуальной профессиональной среды, наиболее полно реализующей задачи научно-исследовательской и проектной деятельности.

Широкая компьютеризация всех видов деятельности человечества: от традиционных интеллектуальных задач научного характера до автоматизации производственной, торговой, коммерческой, банковской и других видов деятельности служит для повышения эффективности производства. В условиях рыночной экономики конкурентную борьбу успешно выдерживают только предприятия, применяющие в своей деятельности современные информационные технологии.

Именно информационные технологии, наряду с прогрессивными технологиями материального производства, позволяют существенно повышать производительность труда и качество продукции и в то же время значительно сокращать сроки постановки на производство новых изделий, отвечающих запросам и ожиданиям потребителей. Все сказанное в первую очередь относится к сложной наукоемкой продукции, в том числе к продукции технического назначения.

Опыт, накопленный в процессе внедрения разнообразных автономных информационных систем, позволил осознать необходимость интеграции различных информационных технологий в единый комплекс, базирующийся на создании в рамках предприятия или группы предприятий (виртуального предприятия) интегрированной информационной среды, поддерживающей все этапы жизненного цикла выпускаемой продукции. Профессиональная среда наиболее полно раскрывает возможности для профессионального совершенствования, используя новые информационные технологии в науке и в сфере управления производственными процессами. Инновационные технологии в области индустрии переработки информации с внедрением CALS-(Continuous Acquisition and Life cycle Support) технологии – непрерывной информационной поддержки жизненного цикла проектируемого объекта, переводит автоматизацию управления производственными процессами на новый уровень.

Использование информационных технологий, основанных на идеологии CALS, является одним из факторов, способствующих более эффективному внедрению системы автоматизированного управления предприятием.

CALS-технологии служат средством, интегрирующим промышленные автоматизированные системы в единую многофункциональную систему. Целью интеграции автоматизированных систем проектирования и управления является повышение эффективности создания и использования сложной техники.

Суть концепции CALS состоит в применении принципов и технологий информационной поддержки на всех стадиях жизненного цикла продукции, основанного на использовании интегрированной информационной среды, обеспечивающей единообразные способы управления процессами и взаимодействия всех участников этого цикла: заказчиков продукции (включая государственные учреждения и ведомства), поставщиков (производителей) продукции, эксплуатационного и ремонтного персонала. Эти принципы и технологии реализуются в соответствии с требованиями международных стандартов, регламентирующих правила управления и взаимодействия преимущественно посредством электронного обмена данными .

При использовании CALS-технологии повышается качество изделий за счет более полного учета имеющейся информации при проектировании и принятии управленческих решений, а также сокращаются материальные и временные затраты на проектирование и изготовление продукции. В процессе внедрения данной технологии обоснованность решений, принимаемых в автоматизированной системе управления предприятием (АСУП), будет выше, если лицо, принимающее решение и соответствующие программы управления, имеет оперативный доступ не только к базе данных АСУП, но и к базам данных других автоматизированных систем и, следовательно, может оптимизировать планы работ, содержание заявок, распределение исполнителей, выделение финансов и т.п. При этом под оперативным доступом следует понимать не просто возможность считывания данных из базы данных, но и легкость их правильной интерпретации, т.е. согласованность по синтаксису и семантике с протоколами, принятыми в АСУП. Технологические подсистемы должны с высокой точностью воспринимать и правильно интерпретировать данные, поступающие от подсистем автоматизированного конструирования. Этого не так легко добиться, если основное предприятие и организации-смежники работают с разными автоматизированными системами . Кроме того, становится актуальной проблема защиты информации по всему периметру действия технологических подсистем.

Применение CALS-технологий позволяет существенно сократить объемы проектных работ, так как описания ранее выполненных удачных разработок компонентов и устройств, многих составных частей оборудования, машин и систем, проектировавшихся ранее, хранятся в базах данных сетевых серверов, доступных любому пользователю CALS-технологии. Доступность и защита опять же обеспечиваются согласованностью форматов, способов, руководств в разных частях общей интегрированной системы. Кроме того, появляются более широкие возможности для специализации предприятий, вплоть до создания виртуальных предприятий, что также способствует снижению затрат.

В процессе внедрения CALS-технологии существенно снижаются затраты на эксплуатацию, благодаря реализации функций интегрированной логистической поддержки. Существенно облегчается решение проблем ремонтопригодности, интеграции продукции в различного рода системы и среды, адаптации к меняющимся условиям эксплуатации и т.п. Эти преимущества интеграции данных достигаются применением современных CALS-технологий.

Промышленные автоматизированные системы могут работать автономно, и в настоящее время организация процесса управления производством происходит на этой основе. Однако эффективность автоматизации будет заметно выше, если данные, генерируемые в одной из систем, будут доступны в других системах, поскольку принимаемые в них решения станут более обоснованными .

Опыт внедрения CALS-технологии показывает, чтобы достичь должного уровня взаимодействия промышленных автоматизированных систем, требуется создание единого информационного пространства в рамках как отдельных предприятий, так и, что более важно, в рамках объединения предприятий. Единое информационное пространство обеспечивается благодаря унификации как формы, так и содержания информации о конкретных изделиях на различных этапах их жизненного цикла.

Унификация формы достигается использованием стандартных форматов и языков представления информации в межпрограммных обменах и при документировании.

Унификация содержания, понимаемая как однозначная правильная интерпретация данных о конкретном изделии на всех этапах его жизненного цикла, обеспечивается разработкой онтологий (метаописаний) приложений, закрепляемых в прикладных протоколах CALS.

САПР – что это?

Итак, что же собой представляют системы автоматизированного проектирования? Под САПР подразумеваются автоматизированные системы, которые призваны реализовывать ту или иную информационную технологию путем проектирования. На практике САПР представляют собой технические системы, которые позволяют таким образом автоматизировать, обеспечить функционирование процессов, которые составляют разработку проектов. Под САПР в зависимости от контекста может иметься в виду:

программное обеспечение, применяемое в качестве основного элемента соответствующей инфраструктуры;

Совокупность технических и кадровых систем (в том числе и тех, что предполагают использование САПР в виде программного обеспечения), применяемых на предприятии с целью автоматизации процесса разработки проектов;

Таким образом, можно выделить широкую и более узкую трактовку термина, о котором идет речь. Тяжело сказать, какая из этих трактовок чаще применяется в бизнесе. Все зависит от конкретной сферы использования систем автоматизированного проектирования, а также от тех задач, для решения которых предполагается применять данные системы. Так, например, в контексте отдельно взятого цеха на производстве, под САПР предполагается конкретная программа для автоматизированного проектирования. Если речь идет о стратегическом планировании развития организации, то такое понятие как САПР скорее всего будет соответствовать масштабной инфраструктуре, которая задействуется с целью повышения эффективности разработки различных проектов. Необходимо отметить, что сам термин САПР представляет собой аббревиатуру, которая может расшифровываться по-разному. В общем случае данная аббревиатура соответствует сочетанию слов «система автоматизированного проектирования». Также существуют и другие варианты расшифровки данной аббревиатуры. Например, довольно распространен вариант «система автоматизации проектных работ». По смыслу английским аналогом термина САПР является аббревиатура CAD, в некоторых случаях также используется CAX.Давайте более подробно рассмотрим следующий вопрос: в каких целях могут создаваться системы автоматизированного проектирования в машиностроении и других сферах?

САПР: цели создания

Основной целью разработки САПР является повышение эффективности труда специалистов предприятия, которые решают различные производственные задачи, в том числе и те, которые связаны с инженерным проектированием. В данном случае повышение эффективности может осуществляться за счет следующих факторов:

Снижения трудоемкости процесса проектирования;

Сокращения сроков реализации проектов;

Снижения себестоимости проектных работ, и издержек, связанных с эксплуатацией;

Обеспечение повышения качества инфраструктуры проектирования.

Снижение издержек на проведение испытаний и моделирование.

САПР – это инструмент, который позволяет добиться отмеченных преимуществ за счет следующих факторов:

Эффективная информационная поддержка специалистов, участвующих в разработке проектов;

Автоматизация документации;

Применение концепций параллельного проектирования;

Унификация различных решений;

Применение математического моделирования, как альтернативы дорогостоящим испытаниям;

Оптимизация методов проектирования;

Повышение качества процессов управления бизнесом.

Теперь давайте рассмотрим, в какой структуре может быть представлена система автоматического проектирования.

САПР: классификации

К наиболее распространенным критериям классификации САПР относится отраслевое назначение. Выделяют следующие типы:

  1. Автоматизированное проектирование инфраструктуры машиностроения;
  2. САПР для электронного оборудования;
  3. САПР в сфере строительства.

Первый тип систем САПР может быть использован в широком спектре отраслей: авиастроении, автомобилестроении, судостроении, производстве товаров народного потребления. Также соответствующая инфраструктура может быть использована с целью разработки как отдельных деталей, так и различных механизмов при использовании всевозможных подходов в рамках моделирования и проектирования.

Системы САПР второго типа используются для проектирования готового электронного оборудования и его отдельных элементов, например, интегральных микросхем, процессоров, и других типов аппаратного обеспечения.

САПР третьего типа могут быть задействованы с целью проектирования различных сооружений, зданий, элементов инфраструктуры.

Еще одним критерием, по которому можно классифицировать системы автоматизированного проектирования, является целевое назначение. Здесь выделяют:

Средства проектирования, используемые с целью автоматизации двумерных или трехмерных геометрических моделей, для формирования конструкторской документации;

Системы, используемые с целью разработки различных чертежей;

Системы, разработанные для геометрического моделирования;

Системы, предназначенные для автоматизации расчетов в рамках инженерных проектов и динамического моделирования;

Средства автоматизации, применяемые с целью технологической оптимизации проектов;

Системы, предназначенные для компьютерного анализа различных параметров по проектам.

Данная классификация считается условной.

В автоматизированную систему технологического проектирования может входить широкий спектр функций из числа перечисленных выше. Конкретный перечень возможностей САПР прежде всего определяет разработчик данной системы. Давайте рассмотрим, какие задачи он может решать.

Инструментальные системы разработки программного обеспечения Инструментальное программное обеспечение

1. Инструменты разработки программных средств. В процессе разработки программных средств в той или иной мере используется компьютерная поддержка процессов разработки ПС. Это достигается путем представления хотя бы некоторых программных документов ПС (прежде всего, программ) на компьютерных носителях данных (например, дисках) и предоставлению в распоряжение разработчика ПС специальных ПС или включенных в состав компьютера специальных устройств, созданных для какой-либо обработки таких документов. В качестве такого специального ПС можно указать компилятор с какого-либо языка программирования.

Компилятор избавляет разработчика ПС от необходимости писать программы на языке компьютера, который для разработчика. ПС был бы крайне неудобен, - вместо этого он составляет программы на удобном ему языке программирования, которые соответствующий компилятор автоматически переводит на язык компьютера. В качестве специального устройства, поддерживающего процесс разработки ПС, может служит эмулятор какого-либо языка. Эмулятор позволяет выполнять (интерпретировать) программы на языке, отличном от языка компьютера, поддерживающего разработку ПС, например на языке компьютера, для которого эта программа предназначена. ПС, предназначенное для поддержки разработки других ПС, будем называть программным инструментом разработки ПС, а устройство компьютера, специально предназначенное для поддержки разработки ПС, будем называть аппаратным инструментом разработки ПС.

Инструменты разработки ПС могут использоваться в течении всего жизненного цикла ПС для работы с разными программными документами. Так текстовый редактор может использоваться для разработки практически любого программного документа. С точки зрения функций, которые инструменты выполняют при разработке ПС, их можно разбить на следующие четыре группы: · редакторы, · анализаторы, · преобразователи, · инструменты, поддерживающие процесс выполнения программ.

Редакторы поддерживают конструирование (формирование) тех или иных программных документов на различных этапах жизненного цикла. Как уже упоминалось, для этого можно использовать один какой-нибудь универсальный текстовый редактор. Однако, более сильную поддержку могут обеспечить специализированные редакторы: для каждого вида документов - свой редактор. В частности, на ранних этапах разработки в документах могут широко использоваться графические средства описания (диаграммы, схемы и т. п.). В таких случаях весьма полезными могут быть графические редакторы. На этапе программирования (кодирования) вместо текстового редактора может оказаться более удобным синтаксически управляемый редактор, ориентированный на используемый язык программирования. Анализаторы производят либо статическую обработку документов, осуществляя различные виды их контроля, выявление определенных их свойств и накопление статистических данных (например, проверку соответствия документов указанным стандартам), либо динамический анализ программ (например, с целью выявление распределения времени работы программы по программным модулям). Преобразователи позволяют автоматически приводить документы к другой форме представления (например, форматеры) или переводить документ одного вида к документу другого вида (например, конверторы или компиляторы), синтезировать какой-либо документ из отдельных частей и т. п.

Инструменты, поддерживающие процесс выполнения программ, позволяют выполнять на компьютере описания процессов или отдельных их частей, представленных в виде, отличном от машинного кода, или машинный код с дополнительными возможностями его интерпретации. Примером такого инструмента является эмулятор кода другого компьютера. К этой группе инструментов следует отнести и различные отладчики. По-существу, каждая система программирования содержит программную подсистему периода выполнения, которая выполняет наиболее типичные для языка программирования программные фрагменты и обеспечивает стандартную реакцию на возникающие при выполнении программ исключительные ситуации (такую подсистему мы будем называть исполнительной поддержкой), - также можно рассматривать как инструмент данной группы.

2. Инструментальные среды разработки и сопровождения программных средств. В настоящее время с каждой системой программирования связываются не отдельные инструменты (например, компилятор), а некоторая логически связанная совокупность программных и аппаратных инструментов поддерживающих разработку и сопровождение ПС на данном языке программирования или ориентированных на какую-либо конкретную предметную область. Такую совокупность будем называть инструментальной средой разработки и сопровождения ПС. Для таких инструментальных сред характерно, во-первых, использование как программных, так и аппаратных инструментов, и, во-вторых, определенная ориентация либо на конкретный язык программирования, либо на конкретную предметную область. Инструментальная среда не обязательно должна функционировать на том компьютере, на котором должно будет применяться разрабатываемое с помощью ее ПС. Часто такое совмещение бывает достаточно удобным (если только мощность используемого компьютера позволяет это): не нужно иметь дело с компьютерами разных типов, в разрабатываемую ПС можно включать компоненты самой инструментальной среды.

Различают три основных класса инструментальных сред разработки и сопровождения ПС среды программирования, · рабочие места компьютерной технологии, · инструментальные системы технологии программирования. Среда программирования предназначена в основном для поддержки процессов программирования (кодирования), тестирования и отладки ПС. Рабочее место компьютерной технологии ориентировано на поддержку ранних этапов разработки ПС (спецификаций) и автоматической генерации программ по спецификациям. Инструментальная система технологии программирования предназначена для поддержки всех процессов разработки и сопровождения в течение всего жизненного цикла ПС и ориентирована на коллективную разработку больших программных систем с длительным жизненным циклом.

3. Инструментальные среды программирования содержат прежде всего текстовый редактор, позволяющий конструировать программы на заданном языке программирования, инструменты, позволяющие компилировать или интерпретировать программы на этом языке, а также тестировать и отлаживать полученные программы. Кроме того, могут быть и другие инструменты, например, для статического или динамического анализа программ. Взаимодействуют эти инструменты между собой через обычные файлы с помощью стандартных возможностей файловой системы. Различают следующие классы инструментальных сред программирования: · среды общего назначения, · языково-ориентированные среды.

Инструментальные среды программирования общего назначения содержат набор программных инструментов, поддерживающих разработку программ на разных языках программирования (например, текстовый редактор, редактор связей или интерпретатор языка целевого компьютера) и обычно представляют собой некоторое расширение возможностей используемой операционной системы. Для программирования в такой среде на каком-либо языке программирования потребуются дополнительные инструменты, ориентированные на этот язык (например, компилятор). . . Классификация инструментальных сред программирования

4. Понятие компьютерной технологии разработки программных средств и ее рабочие места. Имеются некоторые трудности в выработке строгого определения CASE-технологии (компьютерной технологии разработки ПС). CASE - это абревиатура от английского Computer-Aided Software Engineering (Компьютерно. Помогаемая Инженерия Программирования). Но без помощи (поддержки) компьютера ПС уже давно не разрабатываются (используется хотя бы компилятор). В действительности, в это понятие вкладывается более узкий (специальный) смысл, который постепенно размывается (как это всегда бывает, когда какое-либо понятие не имеет строгого определения). Первоначально под CASE понималась инженерия ранних этапов разработки ПС (определение требований, разработка внешнего описания и архитектуры ПС) с использованием программной поддержки (программных инструментов). Теперь под CASE может пониматься и инженерия всего жизненного цикла ПС (включая и его сопровождение), но только в том случае, когда программы частично или полностью генерируются по документам, полученным на указанных ранних этапах разработки. В этом случае CASE-технология стала принципиально отличаться от ручной (традиционной) технологии разработки ПС: изменилось не только содержание технологических процессов, но и сама их совокупность.

В настоящее время компьютерную технологию разработки ПС можно характеризовать - Использованием программной поддержки для разработки графических требований и графических спецификаций ПС, - автоматической генерации программ на каком-либо языке программирования или в машинном коде (частично или полностью), - программной поддержки прототипирования.

Инструментальная система технологии программирования - это интегрированная совокупность программных и аппаратных инструментов, поддерживающая все процессы разработки и сопровождения больших ПС в течение всего жизненного цикла в рамках определенной технологии. Из этого определения вытекают следующие основные черты этого класса компьютерной поддержки: · комплексность, · ориентированность на коллективную разработку, · технологическая определенность, · интегрированность.

С учетом обсужденных свойств инструментальных систем технологии программирования можно выделить три их основные компоненты: · база данных разработки (репозиторий), · инструментарий, · интерфейсы.

Репозиторий - центральное компьютерное хранилище информации, связанной с проектом (разработкой) ПС в течении всего жизненного цикла. Инструментарий - набор инструментов, определяющий возможности, предоставляемые системой коллективу разработчиков. Обычно этот набор является открытым: помимо минимального набора (встроенные инструменты), он содержит средства своего расширения (импортированными инструментами), - и структурированным, состоящим из некоторой общей части всех инструментов (ядра) и структурных (иногда иерархически связанных) классов инструментов. Интерфейсы разделяются на 1)пользовательский 2) системные. Пользовательский интерфейс обеспечивает доступ разработчикам к инструментарию (командный язык и т. п.), реализуется оболочкой системы. Системные интерфейсы обеспечивают взаимодействие между инструментами и их общими частями. Системные интерфейсы выделяются как архитектурные компоненты в связи с открытостью системы - их обязаны использовать новые (импортируемые) инструменты, включаемые в систему.

Различают два класса инструментальных систем технологии программирования: 1)инструментальные системы поддержки проекта и 2) языково-зависимые инструментальные системы. Инструментальная система поддержки проекта - это открытая система, способная поддерживать разработку ПС на разных языках программирования после соответствующего ее расширения программными инструментами, ориентированными на выбранный язык. Такая система содержит ядро (обеспечивающее, в частности, доступ к репозиторию), набор инструментов, поддерживающих управление (management) разработкой ПС, независимые от языка программирования инструменты, поддерживающие разработку ПС (текстовые и графические редакторы, генераторы отчетов и т. п.), а также инструменты расширения системы. Языково-зависимая инструментальная система - это система поддержки разработки ПС на каком-либо одном языке программирования, существенно использующая в организации своей работы специфику этого языка. Эта специфика может сказываться и на возможностях ядра (в том числе и на структуре репозитория), и на требованиях к оболочке и инструментам.

Унифицированный язык моделирования UML Большинство существующих методов объектно-ориентированного анализа и проектирования (ООАП) включают как язык моделирования, так и описание процесса моделирования. Язык моделирования – это нотация (в основном графическая), которая используется методом для описания проектов. Нотация представляет собой совокупность графических объектов, которые используются в моделях; она является синтаксисом языка моделирования. Например, нотация диаграммы классов определяет, каким образом представляются такие элементы и понятия, как класс, ассоциация и множественность. Процесс – это описание шагов, которые необходимо выполнить при разработке проекта. Унифицированный язык моделирования UML (Unified Modeling Language) – это преемник того поколения методов ООАП, которые появились в конце 80 -х и начале 90 -х гг.

Язык UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Язык UML одновременно является простым и мощным средством моделирования, который может быть эффективно использован для построения концептуальных, логических и графических моделей сложных систем самого различного целевого назначения. Конструктивное использование языка UML основывается на понимании общих принципов моделирования сложных систем и особенностей процесса объектно-ориентированного проектирования (ООП) в частности. Выбор выразительных средств для построения моделей сложных систем предопределяет те задачи, которые могут быть решены с использованием данных моделей. При этом одним из основных принципов построения моделей сложных систем является принцип абстрагирования, который предписывает включать в модель только те аспекты проектируемой системы, которые имеют непосредственное отношение к выполнению системой своих функций или своего целевого предназначения. При этом все второстепенные детали опускаются, чтобы чрезмерно не усложнять процесс анализа и исследования полученной модели.

UML содержит стандартный набор диаграмм и нотаций самых разнообразных видов. Диаграмма в UML – это графическое представление набора элементов, изображаемое чаще всего в виде связанного графа с вершинами (сущностями) и ребрами (отношениями). Диаграммы рисуют для визуализации системы с разных точек зрения. Диаграмма – в некотором смысле одна из проекций системы. Как правило, за исключением наиболее тривиальных случаев, диаграммы дают свернутое представление элементов, из которых составлена система. Один и тот же элемент может присутствовать во всех диаграммах, или только в нескольких (самый распространенный вариант), или не присутствовать ни в одной (очень редко). Теоретически диаграммы могут содержать любые комбинации сущностей и отношений. На практике, однако, применяется сравнительно небольшое количество типовых комбинаций, соответствующих пяти наиболее употребительным видам, которые составляют архитектуру программной системы.

UML выделяют следующие типы диаграмм: – диаграммы вариантов использования (usecase diagrams) – для моделирования бизнес-процессов организации (требований к системе); – диаграммы классов (class diagrams) – для моделирования статической структуры классов системы и связей между ними. На таких диаграммах показывают классы, интерфейсы, объекты и кооперации, а также их отношения. При моделировании объектно-ориентированных систем этот тип диаграмм используют чаще всего. Диаграммы классов соответствуют статическому виду системы с точки зрения проектирования; – диаграммы поведения системы (behavior diagrams); диаграммы взаимодействия (interaction diagrams) – для моделирования процесса обмена сообщениями между объектами. – диаграммы состояний (statechart diagrams) – для моделирования поведения объектов системы при переходе из одного состояния в другое.

– диаграммы деятельностей (activity diagrams) – для моделирования поведения системы в рамках различных вариантов использования или моделирования деятельностей. – диаграммы реализации (implementation diagrams): диаграммы компонентов (component diagrams) – для моделирования иерархии компонентов (подсистем) системы; диаграммы размещения (deployment diagrams) – для моделирования физической архитектуры системы.

К инструментальному программному обеспечению относятся средства разработки программного обеспечения. Это системы программирования, включающие программные средства, необходимые для автоматического построения машинного кода. Они являются инструментами для программистов- профессионалов и позволяют разрабатывать программы на различных языках программирования.

В состав средств разработки программного обеспечения входят следующие программы:

  • ассемблеры – компьютерные программы, осуществляющие преобразование программы в форме исходного текста на языке ассемблера в машинные команды в виде объектного кода;
  • трансляторы – программы, выполняющие трансляцию программы;
  • компиляторы – программы, переводящие текст программы на языке высокого уровня в эквивалентную программу на машинном языке;
  • интерпретаторы – программы, анализирующие команды или операторы программы и тут же выполняющие их;
  • компоновщики (редакторы связей) – программы, которые производят компоновку – принимают на вход один или несколько объектных модулей и собирают по ним исполнимый модуль;
  • препроцессоры исходных текстов – это компьютерные программы, принимающие данные на входе, и выдающие данные, предназначенные для входа другой программы, например такой, как компилятор;
  • отладчики (debugger) – программы, являющиеся модулем среды разработки или отдельным приложением, предназначенным для поиска ошибок в программе;
  • специализированные редакторы исходных текстов – программы, необходимые для создания и редактирования исходного кода программ. Специализированный редактор исходных текстов может быть отдельным приложением или встроенным в интегрированную среду разработки и др.

Языки, представляющие алгоритмы в виде последовательности читаемых (не двоично-кодированных) команд, называются алгоритмическими языками. Алгоритмические языки подразделяются на машинно-ориентированные, процедурно-ориентированные и проблемно-ориентированные.

Машинно-ориентированные языки относятся к языкам программирования низкого уровня – программирование на них наиболее трудоемко, но позволяет создавать оптимальные программы, максимально учитывающие функционально-структурные особенности конкретного компьютера. Программы на этих языках, при прочих равных условиях, будут более короткими и быстрыми. Кроме того, знание основ программирования на машинно-ориентированном языке позволяет специалисту подробнейшим образом разобраться с архитектурой компьютера. Большинство команд машинно-ориентированных языков при трансляции (переводе) на машинный (двоичный) язык генерируют одну машинную команду.

Процедурно-ориентированные и проблемно-ориентированные языки относятся к языкам высокого уровня, использующим макрокоманды. Макрокоманда при трансляции генерирует много машинных команд (для процедурноориентированного языка это соотношение в среднем "1 к десяткам машинных команд", а для проблемно-ориентированного – "1 к сотням машинных команд". Процедурноориентированные языки программирования являются самыми используемыми (Basic, Visual Basic, Pascal, Borland Delphi, С и др.). В этом случае программист должен описывать всю процедуру решения задачи, тогда как проблемно-ориентированные языки (их называют также непроцедурными) позволяют лишь формально идентифицировать проблему и указать состав, структуры представления и форматы входной и выходной информации для задачи.

При выполнении инструкций программ компьютеру необходимо преобразовать удобные для человеческого восприятия операторы, написанные на каком-либо языке программирования, в форму, попятную для компьютера. Инструментальное программное обеспечение имеет специальные программы, транслирующие (translate) текст программ, написанных на различных языках программирования, в машинные коды, которые затем выполняются компьютером. Этот вид программного обеспечения называется компилятором или интерпретатором. Текст программы, написанной на языке программирования высокого уровня, до того как быть преобразованным в машинные коды, называется исходным кодом (source code). Компилятор (compiler) преобразует исходный код в машинные коды, называемые объектным кодом (object code) – программой на выходном языке транслятора. Перед выполнением происходит процесс редактирования связей (linkage editing), заключающийся в том, что модули выходной программы объединяются с другими модулями объектного кода, содержащими, например, данные. Результирующий загрузочный модуль – это команды, непосредственно выполняемые компьютером. Некоторые языки программирования содержат не компилятор, а интерпретатор (interpreter), который преобразует каждое отдельное выражение исходного кода в машинные коды и сразу выполняет их. Интерпретатор удобен на этапе отладки программы, так как обеспечивает быструю обратную связь при обнаружении ошибки в исходном коде. Основы программирования на языке высокого уровня Visual Basic изложены в гл. 12 настоящего учебника.

К инструментальному ПО относят также некоторые системы управления базами данных (СУБД). СУБД – это специализированный комплекс программ, предназначенный для организации и ведения баз данных. Так как системы управления базами данных не являются обязательным компонентом вычислительной системы, их не относят к системному программному обеспечению. А так как отдельные СУБД осуществляют лишь служебную функцию при работе других видов программ (веб-серверы, серверы приложений), их не всегда можно отнести к прикладному программному обеспечению. По этим причинам их часто относят к инструментальному программному обеспечению.

Основные функции таких СУБД:

  • управление данными во внешней памяти (на дисках);
  • управление данными в оперативной памяти с использованием дискового кэша;
  • фиксация изменений в специальных журналах, резервное копирование и восстановление базы данных после сбоев;
  • поддержка языков БД (язык определения данных, язык манипулирования данными).

Теоретические основы СУБД описаны выше (параграф 3.2), а практическое применение описано в гл. 10.

Выделены и охарактеризованы основные этапы разработки программного обеспечения. Для каждого этапа приведены и описаны средства, которые могут быть применены для достижения целей этапа.

1. Терминология

Прежде чем приступить к рассмотрению средств разработки, которые могут быть применены для создания программ, необходимо определиться с основными понятиями, терминами, которые будут использоваться в статье. В соответствии с тематикой статьи базовым термином для нас, конечно же, является «средства разработки программ». Применительно к области разработки программного обеспечения данное определение может звучать следующим образом:

Средства разработки программного обеспечения – совокупность приемов, методов, методик, а также набор инструментальных программ (компиляторы, прикладные/системные библиотеки и т.д.), используемых разработчиком для создания программного кода Программы, отвечающего заданным требованиям.

С учетом данного определения термин «Разработка программ» будет звучать следующим образом:

Разработка программ сложный процесс, основной целью которого является создание, сопровождение программного кода, обеспечивающего необходимый уровень надежности и качества. Для достижения основной цели разработки программ используются средства разработки программного обеспечения.

2. Основные средства, используемые на разных этапах разработки программ

В зависимости от предметной области и задач, поставленных перед разработчиками, разработка программ может представлять собой достаточно сложный, поэтапный процесс, в котором задействовано большое количество участников и разнообразных средств. Для того, чтобы определить, когда и в каких случаях какие средства применяются, выделим основные этапы разработки программного обеспечения. Наибольший интерес для проблематики рассматриваемого вопроса представляют следующие этапы разработки:

  1. Проектирование приложения.
  2. Реализация программного кода приложения.
  3. Тестирование приложения.

Здесь сознательно опущены этапы, связанные с написанием технического задания, планирования сроков, бюджета и т.д. Причина этого заключается в том, что на данных этапах, за редким исключением, практически не используются специфические средства разработки.

2.1 Средства проектирования приложений

На этапе проектирования приложения в зависимости от сложности разрабатываемого программного продукта, напрямую зависящего от предъявляемых требований, выполняются следующие задачи проектирования:

  1. Анализ требований.
  2. Разработка архитектуры будущего программного обеспечения.
  3. Разработка устройств основных компонент программного обеспечения.
  4. Разработка макетов Пользовательских интерфейсов.

Результатом проектирования обычно является «Эскизный проект» (Software Design Document) или «Технический проект» (Software Architecture Document). Задача «Анализ требований» обычно выполняется с использованием методов системологии (анализа и синтеза) с учетом экспертного опыта проектировщика. Результатом анализа обычно является содержательная или формализованная модель процесса функционирования программы. В зависимости от сложности процесса для построения данных моделей могут быть применены различные методы и вспомогательные средства. В общем случае для описания моделей обычно применяются следующие нотации (в скобках приведены программные средства, которые могут быть использованы для получения моделей):

  • BPMN (Vision 2003 + BPMN, AcuaLogic BPMN, Eclipse, Sybase Power Designer).
  • Блок-схемы (Vision 2003 и многие другие).
  • ER-диаграмы (Visio 2003, ERWin, Sybase Power Designer и многие другие).
  • UML-диаграмы (Sybase Power Designer, Rational Rose и многие другие).
  • макеты, мат-модели и т.д.

Иногда, когда разрабатываемый программный продукт предназначен для автоматизации какой-либо сложной деятельности задача Анализа (Моделирования) выполняется до составления технических требований к будущему продукту. Результаты анализа позволяют сформировать обоснованные требования к той или иной функциональности разрабатываемой программы и просчитать реальную выгоду от внедрения разрабатываемого продукта. Более того, иного получается так, что по результатам анализа первоначальные цели и задачи автоматизации кардинально меняются или по результатам оценки эффективности разработки и внедрения принимается решение продукт не разрабатывать.

Целью второй и третьей задачи из приведенного списка задач является разработка модели (описания) будущей системы, понятной для кодировщика – человека, который пишет код программы. Здесь огромное значение имеет то, какую парадигму программирования (парадигму программирования также необходимо рассматривать как средство разработки) необходимо использовать при написании программы. В качестве примера основных парадигм необходимо привести следующее:

  • Функциональное программирование;
  • Структурное программирование;
  • Императивное программирование;
  • Логическое программирование;
  • Объектно-ориентированное программирование (прототипирование; использование классов; субъективно-ориентированное программирование).

Выбор её во многом зависит от сложившихся привычек, опыта, традиций, инструментальных средств, которыми располагает коллектив разработчиков. Иногда разрабатываемый программный продукт настолько сложен, что для решения ряда задач в разных компонентах системы используются разные парадигмы. Необходимо отметить, что выбор того или иного подхода накладывает ограничения на средства, которые будут применены на этапе реализации программного кода. Результатом решения данной задачи в зависимости от подхода могут быть (в скобках приведены программные средства, которые могут быть использованы для их получения):

  • диаграмма классов и т.д (Ration Rose, Sybase PowerDisigner и многие другие).
  • описание модулей структур и их программного интерфейса (например, Sybase PowerDisigner и многие другие).

Разработка макетов пользовательских интерфейсов подразумевает создание наглядного представления того, как будут выглядеть те или иные видеоформы, окна в разрабатываемом приложении. Решение данной задачи основывается на применение средств дизайнера, которые в данной статье рассматриваться не будут.

2.2 Средства реализации программного кода

На этапе реализации программного кода выполняется кодирование отдельных компонент программы в соответствии с разработанным техническим проектом. Средства, которые могут быть применены, в значительной степени зависит от того, какие подходы были использованы во время проектирования и, кроме этого, от степени проработанности технического проекта. Тем не менее, среди средств разработки программного кода необходимо выделить следующие основные виды средств (в скобках приведено примеры средств): методы и методики алгоритмирования.

  • языки программирования (C++,Си, Java, C#, php и многие другие);
  • средства создания пользовательского интерфейса (MFC, WPF, QT, GTK+ и т.д.)
  • средства управления версиями программного кода (cvs, svn, VSS).
  • средства получения исполняемого кода (MS Visual Studio, gcc и многие другие).
  • средства управления базами данных (Оracle, MS SQL, FireBird, MySQL и многие другие).
  • отладчики (MS Visual Studio, gdb и т.д.).

2.3 Средства тестирования программ

Основными задачами тестирования является проверка соответствия функциональности разработанной программы первоначальным требованиям, а также выявление ошибок, которые в явном или неявном виде проявляются во время работы программы. Среди основных работ по тестированию можно выделить следующее:

  • Тестирование на отказ и восстановление.
  • Функциональное тестирование.
  • Тестирование безопасности.
  • Тестирование взаимодействия.
  • Тестирование процесса установки.
  • Тестирование удобства пользования.
  • Конфигурационное тестирование.
  • Нагрузочное тестирование.

Среди основных видов средств, которые могут быть применены для выполнения поставленных работ можно привести следующие:

  • средства анализа кода, профилирования (Code Wizard – ParaSoft, Purify – Rational Softawre. Test Coverage – Semantic и т.д.);
  • средства для тестирования функциональности (TEST – Parasoft, QACenter – Compuware, Borland SilkTest и т.д.);
  • средства для тестирования производительности (QACenter Performance – Compuware и т.д).

3. Заключение

Процесс разработки программ является сложным процессом и то, какие средства необходимо применять во многом зависит от задач, поставленным перед разработчиками. В независимости от задач разработки средства нельзя ограничивать лишь набором каких-то инструментальных средств, также необходимо включать методы, методики, подходы и все-то, что применяется для создания программы, отвечающей заданным требованиям.

Также смотрите :

Реферат

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ - совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ (ГОСТ 19781-90). Также - совокупность программ, процедур и правил, а также документации, относящихся к функционированию системы обработки данных (СТ ИСО 2382/1-84).

ИНСТРУМЕНТАЛЬНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ – программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ. Обычно этот термин применяется для акцентирования отличия данного класса ПО от прикладного и системного программного обеспечения.

КОМПИЛЯТОР – транслятор, выполняющий преобразование программы, составленной на исходном языке, в объектный модуль.

ИНТЕРПРЕТАТОР – программа (иногда аппаратное средство), анализирующая команды или операторы программы и тут же выполняющая их.

ОПЕРАЦИОННАЯ СИСТЕМА - комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой - предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений.

ПРИКЛАДНАЯ ПРОГРАММА - программа, предназначенная для выполнения определенных пользовательских задач и рассчитанная на непосредственное взаимодействие с пользователем.

VISUALBASIC - средство разработки программного обеспечения, разрабатываемое корпорацией Microsoft и включающее язык программирования и среду разработки.

VISUALBASICFORAPPLICATION - немного упрощённая реализация языка программирования Visual Basic, встроенная в линейку продуктов Microsoft Office (включая версии для Mac OS), а также во многие другие программные пакеты, такие как AutoCAD, SolidWorks, CorelDRAW, WordPerfect и ESRI ArcGIS.

Цель работы – исследование видов, функций программного обеспечения, в частности, инструментального.

Классификация программного обеспечения:

Виды инструментального программного обеспечения:

1) Текстовые редакторы

4) Компиляторы

5) Интерпретаторы

6) Линковщики

8) Ассемблеры

9) Отладчики

10) Профилировщики

11) Генераторы документации

Для создания программы на выбранном языке программирования нужно иметь следующие компоненты:

2. Компилятор или интерпретатор. Исходный текст с помощью программы-компилятора переводится в промежуточный объектный код.

Результат работы: Рассмотрено программное обеспечение, его функции и виды, в частности инструментальное программное обеспечение, его сущность, задачи. В третьей главе рассмотрен Microsoft Visual Basic как средство разработки программного обеспечения и его диалект - Microsoft Visual Basic forApplication. В курсовой работе реализован алгоритм решения финансово-экономической задачи с использованием языка программирования Pascal.

Введение

В современном мире уже не один человек, попробовавший блага цивилизации, не может представить свою жизнь без использования компьютерной техники. Ее использование происходит в любой сфере человеческой жизнедеятельности: производстве, торговле, обучении, развлечении и общении людей, их научной и культурной деятельности. Все это благодаря возможности подбора компьютерной техники для решения любой, даже самой сложной задачи.

Однако и универсальность и специализированность компьютерной техники обеспечивается использованием на базе практически любой ЭВМ различного набора программного обеспечения, обеспечивающих решение любых поставленных задач.

Все мы видим огромное многообразие компьютерных программ и ошеломляющие темпы их роста и совершенствования, и лишь малая часть из нас представляет невидимую сторону по их проектированию, разработке и созданию. Однако данная сфера компьютерных технологий является на наш взгляд наиболее важной, так как именно от ее развития будет зависеть бедующее компьютерных технологий.

А так как разработка любой компьютерной программы происходит с использованием Инструментального программного обеспечения, то в нашей курсовой работе хотелось бы подробно остановиться именно на нем, выделив его из всего программного обеспечения и раскрыв его сущность и особенности.

Для наглядности мы рассмотрим инструментальное программное обеспечение (объект исследования) на примере программного комплекса VisualBasicforApplication (предмет исследования), применяемого для программирования в среде MicrosoftOffice – самого распространенного и популярного офисного пакета.

1. Программное обеспечение

1.1 Понятие и сущность программного обеспечения

Программное обеспечение (ПО) – неотъемлемая часть компьютерной системы. Оно является логическим продолжением технических средств любого компьютера. Сфера применения конкретного компьютера определяется созданным для него ПО. Сам по себе компьютер не обладает знаниями ни в одной области применения. Все эти знания сосредоточены в выполняемых на компьютерах программах, которые имеют набор определенных функциональных возможностей и предназначены для выполнения конкретных, в большинстве случаев, узкоспециализированных функций, таких например как создание и обработка графических изображений или звуковых файлов.

Программное обеспечение в настоящее время составляет сотни тысяч программ, которые предназначены для обработки самой разнообразной информации с самыми различными целями.

К программному обеспечению (ПО) относится также вся область деятельности по проектированию и разработке ПО:

1) технология проектирования программ (например, нисходящее проектирование, структурное и объектно-ориентированное проектирование);

2) методы тестирования программ;

3) методы доказательства правильности программ;

4) анализ качества работы программ;

5) документирование программ;

6) разработка и использование программных средств, облегчающих процесс проектирования программного обеспечения, и многое другое.

Существует множество различных определений ПО. Вообще, программное обеспечение - совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ (ГОСТ 19781-90). Также - совокупность программ, процедур и правил, а также документации, относящихся к функционированию системы обработки данных (СТ ИСО 2382/1-84).

Программное обеспечение является одним из видов обеспечения вычислительной системы, наряду с техническим (аппаратным), математическим, информационным, лингвистическим, организационным и методическим обеспечением.

В компьютерном сленге часто используется слово софт от английского слова software, которое в этом смысле впервые применил в статье в American Mathematical Monthly математик из Принстонского университета Джон Тьюки (англ. JohnW. Tukey) в 1958 году.

Другие определения:

1) ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ - это совокупность программ, позволяющих осуществить на компьютере автоматизированную обработку информации.

2) ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ (математическое обеспечение электронной вычислительной машины), совокупность программ системы обработки данных и программных документов, необходимых для реализации программ на электронной вычислительной машине.

3) ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ - совокупность программ для управления процессом работы компьютера, автоматизации программирования.

4) ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ - комплекс компьютерных программ, обеспечивающий обработку или передачу данных.

Все определения похожи и отражают суть программного обеспечения – организация взаимодействия аппаратной (технической) части, в виде различных встроенных узлов и периферических устройств, их контроль и координация общего взаимодействия компьютерной системы между собою и с пользователем.

1.2 Функции программного обеспечения

Приведенные выше понятия программного обеспечения обуславливают функции, выполняемые программным обеспечением в процессе функционирования компьютерной техники. Перечень данных функций весьма разнообразен, но условно их можно разбить на следующие пять типов:

1. Аппаратно-механические. Осуществляют сопряжение различных компонентов компьютера, обеспечивают передачу аппаратного сигнала от одного компонента к другому.

2. Машинно-Логические. Обрабатывают и интерпретируют набор электромагнитных импульсов аппаратного обеспечения в логически осознанный программный код, обладающий определенной структурой и свойствами.

3. Информационно-командные. Осуществляют проверку соответствия программного кода принципам системы и создание логической структуры информации и осуществляют его исполнение.

4. Интерфейсные. Обеспечивают обработку и интерпретацию программного кода в формат отображения доступный для восприятия пользователем. Создает благоприятную среду для взаимодействия «Компьютер-Человек, Человек-Компьютер».

5. Прикладные. Осуществляет математические, логические, физические и другие действия с набором имеющихся данных, другими словами обработку имеющейся информации для решения определенных задач.

Данный перечень является далеко не исчерпывающим, что говорит о многообразии и неоднозначности функций, выполняемых программным обеспечением.

1.3 Виды программного обеспечения

В зависимости от функций, обеспечиваемым определенным компонентом компьютера, возникает необходимость создания для него своего специализированного программного обеспечения, что и является основополагающим мотивом создания программного обеспечения различных видов, приведенных на (рис.1):

a) Прикладные программы, непосредственно обеспечивающие выполнение необходимых пользователям работ;

b) системные программы, предназначены для управления работой вычислительной системы, выполняют различные вспомогательные функции, например:

1) управление ресурсами компьютера;

2) создание копий используемой информации;

3) проверка работоспособности устройств компьютера;

4) выдача справочной информации о компьютере и др.;

c) инструментальные программные системы, облегчающие процесс создания новых программ для компьютера.

Системное программное обеспечение обеспечивает функционирование и обслуживание компьютера, а также автоматизацию процесса создания новых программ. К системному программному обеспечению относятся: операционные системы и их пользовательский интерфейс; инструментальные программные средства; системы технического обслуживания.

Операционная система - обязательная часть специального программного обеспечения, обеспечивающая эффективное функционирование персонального компьютера в различных режимах, организующая выполнение программ и взаимодействие пользователя и внешних устройств с ЭВМ.

Пользовательский интерфейс (сервисные программы) - это программные надстройки операционной системы (оболочки и среды), предназначенные для упрощения общения пользователя с операционной системой.

Программы, обеспечивающие интерфейс, сохраняют форму общения (диалог) пользователя с операционной системой, но изменяют язык общения (обычно язык команд преобразуется в язык меню). Сервисные системы условно можно разделить на интерфейсные системы, оболочки операционных систем и утилиты.

Интерфейсные системы - это мощные сервисные системы, чаще всего графического типа, совершенствующие не только пользовательский, но и программный интерфейс операционных систем, в частности, реализующие некоторые дополнительные процедуры разделения дополнительных ресурсов.

Оболочки операционных систем предоставляют пользователю качественно новый по сравнению с реализуемым операционной системой интерфейс и делают необязательным знание последнего.

Утилиты автоматизируют выполнение отдельных типовых, часто используемых процедур, реализация которых потребовала бы от пользователя разработки специальных программ. Многие утилиты имеют развитый диалоговый интерфейс с пользователем и приближаются по уровню общения к оболочкам.

Инструментальные программные средства (системы программирования) - обязательная часть программного обеспечения, с использованием которой создаются программы. Инструментальные программные средства включают в свой состав средства написания программ (текстовые редакторы); средства преобразования программ в вид, пригодный для выполнения на компьютере (ассемблеры, компиляторы, интерпретаторы, загрузчики и редакторы связей), средства контроля и отладки программ.

Текстовые редакторы позволяют удобно редактировать, формировать и объединять тексты программ, а некоторые - и контролировать синтаксис создаваемых программ.

Программа, написанная на алгоритмическом языке, должна быть преобразована в объектный модуль, записанный на машинном языке (в двоичных кодах). Подобное преобразование выполняется трансляторами (ассемблером - с языка Assembler и компиляторами - с языков высокого уровня). Для некоторых алгоритмических языков используются интерпретаторы, не создающие объектный модуль, а при каждом очередном выполнении программы, переводящие каждую ее отдельную строку или оператор на машинный язык. Объектный модуль обрабатывается загрузчиком - редактором связей, преобразующие его в исполняемую машинную программу.

Средства отладки позволяют выполнять трассировку программ (пошаговое выполнение с выдачей информации о результатах исполнения), производить проверку синтаксиса программы и промежуточных результатов в точках останова, осуществлять модификацию значений переменных в этих точках.

Системы технического и сервисного обслуживания представляют собой программные средства контроля, диагностики и восстановления работоспособности компьютера, дисков и т. д.

Прикладное программное обеспечение обеспечивает решение пользовательских задач. Ключевым понятием здесь является пакет прикладных программ.

Пакет прикладных программ - это совокупность программ для решения круга задач по определенной тематике или предмету. Различают следующие типы пакетов прикладных программ:

1) общего назначения - ориентированы на автоматизацию широкого круга задач пользователя (текстовые процессоры, табличные редакторы, системы управления базами данных, графические процессоры, издательские системы, системы автоматизации проектирования и т. д.);

2) методо-ориентированные - реализация разнообразных экономико-математических методов решения задач (математического программирования, сетевого планирования и управления, теории массового обслуживания, математической статистики и т. д.);

3) проблемно-ориентированные - направлены на решение определенной задачи (проблемы) в конкретной предметной области (банковские пакеты, пакеты бухгалтерского учета, финансового менеджмента, правовых справочных систем и т. д.).

К прикладному программному обеспечению относятся сервисные программные средства, которые служат для организации удобной рабочей среды пользователя, а также для выполнения вспомогательных функций (информационные менеджеры, переводчики и т. д.).

При построении классификации ПО нужно учитывать тот факт, что стремительное развитие вычислительной техники и расширение сферы приложения компьютеров резко ускорили процесс эволюции программного обеспечения. Если раньше можно было легко перечислить основные категории ПО - операционные системы, трансляторы, пакеты прикладных программ, то сейчас ситуация коренным образом изменилась. Развитие ПО пошло как вглубь (появились новые подходы к построению операционных систем, языков программирования и т.д.), так и вширь (прикладные программы перестали быть прикладными и приобрели самостоятельную ценность). Соотношение между требующимися программными продуктами и имеющимися на рынке меняется очень быстро. Даже классические программные продукты, такие, как операционные системы, непрерывно развиваются и наделяются интеллектуальными функциями, многие из которых ранее относились только к интеллектуальным возможностям человека.

2. Инструментальное программное обеспечение

2.1 Сущность и понятие инструментального программного обеспечения

Инструментальное программное обеспечение (ИПО) - программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ.

Применяется инструментальное обеспечение в фазе разработки. Инструментальное программное обеспечение - это совокупность программ, используемых для помощи программистам в их работе, для помощи руководителям разработки программного обеспечения в их стремлении проконтролировать процесс разработки и получаемую продукцию. Наиболее известными представителями этой части программного обеспечения являются программы трансляторов с языков программирования, которые помогают программистам писать машинные команды. Инструментальными программами являются трансляторы с языков Фортран, Кобол, Джо-виал, Бейсик, АПЛ и Паскаль. Они облегчают процесс создания новых рабочих программ. Однако трансляторы с языков это только наиболее известная часть инструментальных программ; существует же их великое множество.

Использование вычислительных машин для помощи в создании новых программ далеко не очевидно для людей, не являющихся профессиональными программистами. Часто же бывает так, что профессионалы рассказывают об инструментальном (фаза разработки) и системном (фаза использования) программном обеспечении на едином дыхании, предполагая, что не посвященному в тайны их мастерства известно об этой роли инструментального программного обеспечения. Так же как и в фазе использования (для прикладных программ), системное обеспечение работает и в фазе разработки, но только совместно с инструментальным обеспечением. Инструментальное ПО или системы программирования - это системы для автоматизации разработки новых программ на языке программирования.

В самом общем случае для создания программы на выбранном языке программирования (языке системного программирования) нужно иметь следующие компоненты:

1. Текстовый редактор для создания файла с исходным текстом программы.

2. Компилятор или интерпретатор. Исходный текст с помощью программы-компилятора переводится в промежуточный объектный код. Исходный текст большой программы состоит из нескольких модулей (файлов с исходными текстами). Каждый модуль компилируется в отдельный файл с объектным кодом, которые затем надо объединить в одно целое.

3. Редактор связей или сборщик, который выполняет связывание объектных модулей и формирует на выходе работоспособное приложение - исполнимый код.

Исполнимый код - это законченная программа, которую можно запустить на любом компьютере, где установлена операционная система, для которой эта программа создавалась. Как правило, итоговый файл имеет расширение.ЕХЕ или.СОМ.

В последнее время получили распространение визуальный методы программирования (с помощью языков описания сценариев), ориентированные на создание Windows-приложений. Этот процесс автоматизирован в средах быстрого проектирования. При этом используются готовые визуальные компоненты, которые настраиваются с помощью специальных редакторов.

Наиболее популярные редакторы (системы программирования программ с использованием визуальных средств) визуального проектирования:

1) Borland Delphi - предназначен для решения практически любых задачи прикладного программирования.

2) Borland C++ Builder - это отличное средство для разработки DOS и Windows приложений.

3) Microsoft Visual Basic - это популярный инструмент для создания Windows-программ.

4) Microsoft Visual C++ - это средство позволяет разрабатывать любые приложения, выполняющиеся в среде ОС типа Microsoft Windows

Таким образом, сущность инструментального программного обеспечения заключается в создании любой исполняемой программы, путем преобразования формально логических выражений в исполняемый машинный код, а также его контроль и корректировка.

2.2 Задачи и функции инструментального программного обеспечения

Для инструментального программного обеспечения, как особой разновидности программного обеспечения, характерны общие и частные

функции, как и для всего программного обеспечении в целом. Общие функции рассмотрены нами выше, а специализированными функциями, присущими только данному типу программ, являются:

1. Создание текста разрабатываемой программы с использованием специально установленных кодовых слов (языка программирования), а также определенного набора символов и их расположения в созданном файле - синтаксис программы.

2. Перевод текста создаваемой программы в машинно-ориентированный код, доступный для распознавания ЭВМ. В случае значительного объема создаваемой программы, она разбивается на отдельные модули и каждый из модулей переводится отдельно.

3. Соединение отдельных модулей в единый исполняемый код, с соблюдением необходимой структуры, обеспечение координации взаимодействия отдельных частей между собой.

4. Тестирование и контроль созданной программы, выявление и устранение формальных, логических и синтаксических ошибок, проверка программ на наличие запрещенных кодов, а также оценка работоспособности и потенциала созданной программы.

2.3 Виды инструментального программного обеспечения

Исходя из задач, поставленных перед инструментальным программным обеспечением, можно выделить большое количество различных по назначению видов инструментального программного обеспечения:

1) Текстовые редакторы

2) Интегрированные среды разработки

4) Компиляторы

5) Интерпретаторы

6) Линковщики

7) Парсеры и генераторы парсеров (см. Javacc)

8) Ассемблеры

9) Отладчики

10) Профилировщики

11) Генераторы документации

12) Средства анализа покрытия кода

13) Средства непрерывной интеграции

14) Средства автоматизированного тестирования

15) Системы управления версиями и др.

Следует отметить, что оболочки для создания прикладных программ создаются также инструментальными программами и поэтому могут быть отнесены к прикладным программам. Рассмотрим кратко назначения некоторых инструментальных программ.

Текстовые редакторы.

Текстовый редактор - компьютерная программа, предназначенная для обработки текстовых файлов, такой как создание и внесение изменений.

Типы текстовых редакторов .

Условно выделяют два типа редакторов: потоковые текстовые редакторы и интерактивные.

Потоковые текстовые редакторы представляют собой компьютерные программы, которые предназначены для автоматизированной обработки входных текстовых данных, полученных из текстового файла, в соответствии с заранее заданными пользователями правилами. Чаще всего правила представляют собой регулярные выражения, на специфичном для данного конкретного текстового редактора диалекте. Примером такого текстового редактора может служить редактор Sed.

Интерактивные текстовые редакторы - это семейство компьютерных программ предназначенных для внесения изменений в текстовый файл в интерактивном режиме. Такие программы позволяют отображать текущее состояние текстовых данных в файле и производить над ними различные действия.

Часто интерактивные текстовые редакторы содержат значительную дополнительную функциональность, призванную автоматизировать часть действий по редактированию, или внести изменение в отображение текстовых данных, в зависимости от их семантики. Примером функциональности последнего рода может служить подсветка синтаксиса.

Текстовые редакторы предназначены для создания и редактирования текстовых документов. Наиболее распространенными являются MS WORD, Лексикон. Основными функциями текстовых редакторов являются:

1) работа с фрагментами документа,

2) вставка объектов созданных в других программах

3) разбивка текста документа на страницы

4) ввод и редактирование таблиц

5) ввод и редактирование формул

6) форматирование абзаца

7) автоматическое создание списков

8) автоматическое создание оглавления.

Известны десятки текстовых редакторов. Наиболее доступными являются NOTEPAD(блокнот), WORDPAD, WORD. Работа конкретного редактора текста определяется обычно функциями, назначение которых отражено в пунктах меню и в справочной системе.

Интегрированная среда разработки

Интегрированная среда разработки, ИСР- система программных средств, используемая программистами для разработки программного обеспечения (ПО). Обычно среда разработки включает в себя:

1) текстовый редактор

2) компилятор и/или интерпретатор

3) средства автоматизации сборки

4) отладчик.

Иногда содержит также средства для интеграции с системами управления версиями и разнообразные инструменты для упрощения конструирования графического интерфейса пользователя. Многие современные среды разработки также включают браузер классов, инспектор объектов и диаграмму иерархии классов - для использования при объектно-ориентированной разработке ПО. Хотя, и существуют среды разработки, предназначенные для нескольких языков программирования - такие, как Eclipse, NetBeans, Embarcadero RAD Studio, Qt Creator или Microsoft Visual Studio, обычно среда разработки предназначается для одного определённого языка программирования - как, например, Visual Basic, Delphi, Dev-C++.

Частный случай ИСР - среды визуальной разработки, которые включают в себя возможность визуального редактирования интерфейса программы.

SDK .

SDK (от англ. SoftwareDevelopmentKit) или «devkit» - комплект средств разработки, который позволяет специалистам по программному обеспечению создавать приложения для определённого пакета программ, программного обеспечения базовых средств разработки, аппаратной платформы, компьютерной системы, видеоигровых консолей, операционных систем и прочих платформ.

Программист, как правило, получает SDK непосредственно от разработчика целевой технологии или системы. Часто SDK распространяется через Интернет. Многие SDK распространяются бесплатно для того, чтобы поощрить разработчиков использовать данную технологию или платформу.

Поставщики SDK иногда подменяют термин Software в словосочетании Software Development Kit на более точное слово. Например, «Microsoft» и «Apple» предоставляют Driver Development Kits (DDK) для разработки драйверов устройств, а «PalmSource» называет свой инструментарий для разработки «PalmOS Development Kit (PDK)».

Примеры SDK :

5) Java Development Kit

6) Opera Devices SDK

Компиляторы.

Компилятор -

1) Программа или техническое средство, выполняющее компиляцию.

2) Машинная программа, используемая для компиляции.

3) Транслятор, выполняющий преобразование программы, составленной на исходном языке, в объектный модуль.

4) Программа, переводящая текст программы на языке высокого уровня в эквивалентную программу на машинном языке.

5) Программа, предназначенная для трансляции высокоуровневого языка в абсолютный код или, иногда, в язык ассемблера. Входной информацией для компилятора (исходный код) является описание алгоритма или программа на проблемно-ориентированном языке, а на выходе компилятора - эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код).

Компиляция -

1) Трансляция программы на язык, близкий к машинному.

2) Трансляция программы, составленной на исходном языке, в объектный модуль. Осуществляется компилятором.

Компилировать - проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык.

Виды компиляторов :

1) Векторизующий. Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.

2) Гибкий. Составлен по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.

3) Диалоговый.

4) Инкрементальный. Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.

5) Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.

6) Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.

7) Отладочный. Устраняет отдельные виды синтаксических ошибок.

8) Резидентный. Постоянно находится в основной памяти и доступен для повторного использования многими задачами.

9) Самокомпилируемый. Написан на том же языке, с которого осуществляется трансляция.

10) Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Виды компиляции :

1) Пакетная. Компиляция нескольких исходных модулей в одном пункте задания.

2) Построчная.

3) Условная. Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

Структура компилятора .

Процесс компиляции состоит из следующих этапов:

1) Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.

2) Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.

3) Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) - например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.

4) Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах - например, над промежуточным кодом или над конечным машинным кодом.

5) Генерация кода. Из промежуточного представления порождается код на целевом языке.

В конкретных реализациях компиляторов эти этапы могут быть разделены или совмещены в том или ином виде.

Трансляция и компоновка .

Важной исторической особенностью компилятора, отражённой в его названии (англ. compile - собирать вместе, составлять), являлось то, что он мог производить и компоновку (то есть содержал две части - транслятор и компоновщик). Это связано с тем, что раздельная компиляция и компоновка как отдельная стадия сборки выделились значительно позже появления компиляторов. В связи с этим, вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Интерпретаторы.

Интерпретатор (языка программирования) -

1) Программа или техническое средство, выполняющее интерпретацию.

2) Вид транслятора, осуществляющего пооператорную (покомандную) обработку и выполнение исходной программы или запроса (в отличие от компилятора, транслирующего всю программу без её выполнения).

3) Программа (иногда аппаратное средство), анализирующая команды или операторы программы и тут же выполняющая их.

4) Языковый процессор, который построчно анализирует исходную программу и одновременно выполняет предписанные действия, а не формирует на машинном языке скомпилированную программу, которая выполняется впоследствии.

Типы интерпретаторов .

Простой интерпретатор анализирует и тут же выполняет (собственно интерпретация) программу покомандно (или построчно), по мере поступления её исходного кода на вход интерпретатора. Достоинством такого подхода является мгновенная реакция. Недостаток - такой интерпретатор обнаруживает ошибки в тексте программы только при попытке выполнения команды (или строки) с ошибкой.

Интерпретатор компилирующего типа - это система из компилятора, переводящего исходный код программы в промежуточное представление, например, в байт-код или p-код, и собственно интерпретатора, который выполняет полученный промежуточный код (так называемая виртуальная машина). Достоинством таких систем является большее быстродействие выполнения программ (за счёт выноса анализа исходного кода в отдельный, разовый проход, и минимизации этого анализа в интерпретаторе). Недостатки - большее требование к ресурсам и требование на корректность исходного кода. Применяется в таких языках, как Java, PHP, Python, Perl (используется байт-код), REXX (сохраняется результат парсинга исходного кода), а также в различных СУБД (используется p-код).

В случае разделения интерпретатора компилирующего типа на компоненты получаются компилятор языка и простой интерпретатор с минимизированным анализом исходного кода. Причём исходный код для такого интерпретатора не обязательно должен иметь текстовый формат или быть байт-кодом, который понимает только данный интерпретатор, это может быть машинный код какой-то существующей аппаратной платформы. К примеру, виртуальные машины вроде QEMU, Bochs, VMware включают в себя интерпретаторы машинного кода процессоров семейства x86.

Некоторые интерпретаторы (например, для языков Лисп, Scheme, Python, Бейсик и других) могут работать в режиме диалога или так называемого цикла чтения-вычисления-печати (англ. read-eval-printloop, REPL). В таком режиме интерпретатор считывает законченную конструкцию языка (например, s-expression в языке Лисп), выполняет её, печатает результаты, после чего переходит к ожиданию ввода пользователем следующей конструкции.

Уникальным является язык Forth, который способен работать как в режиме интерпретации, так и компиляции входных данных, позволяя переключаться между этими режимами в произвольный момент, как во время трансляции исходного кода, так и во время работы программ.

Следует также отметить, что режимы интерпретации можно найти не только в программном, но и аппаратном обеспечении. Так, многие микропроцессоры интерпретируют машинный код с помощью встроенных микропрограмм, а процессоры семейства x86, начиная с Pentium (например, на архитектуре Intel P6), во время исполнения машинного кода предварительно транслируют его во внутренний формат (в последовательность микроопераций).

Алгоритм работы простого интерпретатора :

2. проанализировать инструкцию и определить соответствующие действия;

3. выполнить соответствующие действия;

4. если не достигнуто условие завершения программы, прочитать следующую инструкцию и перейти к пункту 2.

Достоинства и недостатки интерпретаторов .

1) Большая переносимость интерпретируемых программ - программа будет работать на любой платформе, на которой есть соответствующий интерпретатор.

2) Как правило, более совершенные и наглядные средства диагностики ошибок в исходных кодах.

3) Упрощение отладки исходных кодов программ.

4) Меньшие размеры кода по сравнению с машинным кодом, полученным после обычных компиляторов.

1) Интерпретируемая программа не может выполняться отдельно без программы-интерпретатора. Сам интерпретатор при этом может быть очень компактным.

2) Интерпретируемая программа выполняется медленнее, поскольку промежуточный анализ исходного кода и планирование его выполнения требуют дополнительного времени в сравнении с непосредственным исполнением машинного кода, в который мог бы быть скомпилирован исходный код.

3) Практически отсутствует оптимизация кода, что приводит к дополнительным потерям в скорости работы интерпретируемых программ.

Компоновщик .

Компоновщик (также редактор связей, линкер) - программа, которая производит компоновку - принимает на вход один или несколько объектных модулей и собирает по ним исполнимый модуль.

Для связывания модулей компоновщик использует таблицы имён, созданные компилятором в каждом из объектных модулей. Такие имена могут быть двух типов:

1) Определённые или экспортируемые имена - функции и переменные, определённые в данном модуле и предоставляемые для использования другим модулям.

2) Неопределённые или импортируемые имена - функции и переменные, на которые ссылается модуль, но не определяет их внутри себя.

Работа компоновщика заключается в том, чтобы в каждом модуле разрешить ссылки на неопределённые имена. Для каждого импортируемого имени находится его определение в других модулях, упоминание имени заменяется на его адрес.

Компоновщик обычно не выполняет проверку типов и количества параметров процедур и функций. Если надо объединить объектные модули программ, написанные на языках со строгой типизацией, то необходимые проверки должны быть выполнены дополнительной утилитой перед запуском редактора связей.

Ассемблер.

Ассемблер (от англ. assembler - сборщик) - компьютерная программа, компилятор исходного текста программы, написанной на языке ассемблера, в программу на машинном языке.

Как и сам язык (ассемблера), ассемблеры, как правило, специфичны конкретной архитектуре, операционной системе и варианту синтаксиса языка. Вместе с тем существуют мультиплатформенные или вовсе универсальные (точнее, ограниченно-универсальные, потому что на языке низкого уровня нельзя написать аппаратно-независимые программы) ассемблеры, которые могут работать на разных платформах и операционных системах. Среди последних можно также выделить группу кросс-ассемблеров, способных собирать машинный код и исполняемые модули (файлы) для других архитектур и ОС.

Ассемблирование может быть не первым и не последним этапом на пути получения исполняемого модуля программы. Так, многие компиляторы с языков программирования высокого уровня выдают результат в виде программы на языке ассемблера, которую в дальнейшем обрабатывает ассемблер. Также результатом ассемблирования может быть не исполняемый, а объектный модуль, содержащий разрозненные и непривязанные друг к другу части машинного кода и данных программы, из которого (или из нескольких объектных модулей) в дальнейшем с помощью программы-компоновщика («линкера») может быть скомпонован исполнимый файл.

Отладчик или дебаггер является модулем среды разработки или отдельным приложением, предназначенным для поиска ошибок в программе. Отладчик позволяет выполнять пошаговую трассировку, отслеживать, устанавливать или изменять значения переменных в процессе выполнения программы, устанавливать и удалять контрольные точки или условия остановки и т. д.

Список отладчиков .

1) AQtime - коммерческий отладчик для приложений, созданных для.NET Framework версии 1.0, 1.1, 2.0, 3.0, 3.5 (включая ASP.NET приложения), а также для Windows 32- и 64-битных приложений.

2) DTrace - фреймворк динамической трассировки для Solaris, OpenSolaris, FreeBSD, Mac OS X и QNX.

3) Electric Fence - отладчик памяти.

4) GNU Debugger (GDB) - отладчик программ от проекта GNU.

5) IDA - мощный дизассемблер и низкоуровневый отладчик для операционных систем семейства Windows и Linux.

6) Microsoft Visual Studio - среда разработки программного обеспечения, включающая средства отладки от корпорации Microsoft.

7) OllyDbg - бесплатный низкоуровневый отладчик для операционных систем семейства Windows.

8) SoftICE - низкоуровневый отладчик для операционных систем семейства Windows.

9) Sun Studio - среда разработки программного обеспечения, включающая отладчик dbx для ОС Solaris и Linux, от корпорации Sun Microsystems.

10) Dr. Watson - стандартный отладчик Windows, позволяет создавать дампы памяти.

11) TotalView - один из коммерческих отладчиков для UNIX.

12) WinDbg - бесплатный отладчик от корпорации Microsoft.

Генератор документации - программа или пакет программ, позволяющая получать документацию, предназначенную для программистов (документация на API) и/или для конечных пользователей системы, по особым образом комментированному исходному коду и, в некоторых случаях, по исполняемым модулям (полученным на выходе компилятора).

Обычно генератор анализирует исходный код программы, выделяя синтаксические конструкции, соответствующие значимым объектам программы (типам, классам и их членам/свойствам/методам, процедурам/функциям и т. п.). В ходе анализа также используется мета-информация об объектах программы, представленная в виде документирующих комментариев. На основе всей собранной информации формируется готовая документация, как правило, в одном из общепринятых форматов - HTML, HTMLHelp, PDF, RTF и других.

Документирующие комментарии .

Документирующий комментарий - это особым образом оформленный комментарий к объекту программы, предназначенный для использования каким-либо конкретным генератором документации. От того, какой генератор документации применяется, зависит синтаксис конструкций, используемых в документирующих комментариях.

В документирующих комментариях может содержаться информация об авторе кода, описываться назначение объекта программы, смысл входных и выходных параметров - для функции/процедуры, примеры использования, возможные исключительные ситуации, особенности реализации.

Документирующие комментарии, как правило, оформляются как многострочные комментарии в стиле языка Си. В каждом случае комментарий должен находиться перед документируемым элементом. Первым символом в комментарии (и вначале строк комментария) должен быть *. Блоки разделяются пустыми строками.

3. Visual Basic for Applications

программный обеспечение операционный системный

3.1 Сущность VisualBasic и его краткая история

Microsoft Visual Basic (VB) - средство разработки программного обеспечения, разрабатываемое корпорацией Microsoft и включающее язык программирования и среду разработки. Язык Visual Basic унаследовал дух, стиль и отчасти синтаксис своего предка - языка Бейсик, у которого есть немало диалектов. В то же время Visual Basic сочетает в себе процедуры и элементы объектно-ориентированных и компонентно-ориентированных языков программирования. Среда разработки VB включает инструменты для визуального конструирования пользовательского интерфейса. (см. табл.).

Visual Basic (основные характеристики)

Visual Basic считается хорошим средством быстрой разработки прототипов программы, для разработки приложений баз данных и вообще для компонентного способа создания программ, работающих под управлением операционных систем семейства Microsoft Windows.

В процессе эволюции Visual Basic прошел ряд последовательных этапов, позволивших ему стать одним из самых популярных языков программирования на сегодняшний день. Итак, эволюция VisualBasic шла следующим путем:

1. май1991 - выпущен Visual Basic 1.0 дляMicrosoft Windows. За основу языка был взят синтаксис QBasic, а новшеством, принесшим затем языку огромную популярность, явился принцип связи языка и графического интерфейса.

2. сентябрь 1992 - выпущен Visual Basic 1.0 под DOS. Он не был полностью совместим с Windows-версией VB, поскольку являлся следующей версией QuickBASIC и работал в текстовом режиме экрана.

3. ноябрь 1992 - выпущен Visual Basic 2.0. Среда разработки стала проще в использовании и работала быстрее.

4. летом 1993 - вышел в свет Visual Basic 3.0 в версиях Standard и Professional. Ко всему прочему, в состав поставки добавился движок для работы с базами данных Access.

5. август 1995 - Visual Basic 4.0 - версия, которая могла создавать как 32-х, так и 16-разрядные Windows-программы.

6. февраль 1997 - Visual Basic 5.0 - начиная с этой версии, стало возможно, наряду с обычными приложениями, разрабатывать COM-компоненты.

7. В середине 1998 - вышла Visual Basic 6.0. После этого Microsoft резко изменила политику в отношении языков семейства Basic. Вместо развития Visual Basic, был создан абсолютно новый язык Visual Basic .NET.

8. В 2005 году вышла новая версия Visual Basic, в комплекте Visual Studio. Порадовала она новым интерфейсом и возможностями. Язык основан на Visual Basic.NET.

9. В конце 2007 Microsoft выпустила новую версию Visual Basic - Visual Basic 2008, которая также была основана на Visual Basic.NET.

Исходя из функциональных возможностей и специфики применения, можно выделить следующие разновидности указанной программы:

1. Классический Visual Basic (версии 5-6) Этот язык очень сильно привязан к своей среде разработки и к операционной системе Windows, являясь исключительно инструментом написания Windows-приложений

2. VisualBasicforApplications (VBA) Это средство программирования, практически ничем не отличающееся от классического Visual Basic, которое предназначено для написания макросов и других прикладных программ для конкретных приложений. Наибольшую популярность получил благодаря своему использованию в пакете Microsoft Office. Широкое распространение Visual Basic for Applications в сочетании с изначально недостаточным вниманием к вопросам безопасности привело к широкому распространению макровирусов.

3. VisualBasicScriptingEdition (VBScript) Скриптовый язык, являющийся несколько усечённой версией обычного Visual Basic. Используется в основном для автоматизации администрирования систем Windows, а также для создания страниц ASP и сценариев для Internet Explorer.

3.2 VisualBasicforApplication интерфейс, основные функции и возможности

Создавая VisualBasicforApplication, корпорация Microsoft ставила своей основной задачей создание инструментального обеспечения, доступного для пользователей, не являющихся профессиональными программистами, но в то же время достаточно квалифицированных для разработки и проектирования прикладных программ и приложений на базе MicrosoftOffice. Именно решая указанную задачу, разработчики создали VBA, наделив его рядом уникальных особенностей. Одной из таких, наиболее ценных для пользователя является возможность создавать и использовать в программах нестандартные (настраиваемые) диалоговые окна, добавляя объект UserForm в проект, а так же удобный пользовательский интерфейс.

Интерфейс программы VisualBasicforApplicationсостоит из комплекса различных окон и вкладок, используемых при проектировании создаваемого приложения, основными из которых являются:

1) окно Проекта (рис.2), отображающее структуру создаваемого проекта.

2) окно Программного кода (рис. 3), отображающее программный код создаваемого проекта и дающее возможность писать программу классическим способом при помощи встроенного редактора кодовых слов, которых в VBA более 16 тысяч. Также данное окно позволяет редактировать код и проверять его на наличие ошибок.

3) закладка Свойств (рис. 4), отображающая установленные к указанному объекту параметры и дающая возможность изменить указанные настройки.

Перемещаясь между окнами и закладками, пользователь может легко настраивать созданный проект.

Используя создаваемые пользователем формы VBA, можно создавать нестандартные диалоговые окна для отображения данных или получения значений от пользователя программы в том виде, который наиболее соответствует потребностям программы. Например, можно создать тест, отобразить диалоговое окно для отображения вопросов с вариантами ответов и предоставить пользователю возможность выбрать один из вариантов ответа, который он считает верным.

Нестандартные диалоговые окна позволяют программе взаимодействовать с её пользователем самым сложным образом и обеспечивают разнообразную форму ввода и вывода данных.

Нестандартное диалоговое окно создаётся в VBA посредством добавления объекта UserForm в проект. Этот объект представляет собой пустое диалоговое окно; оно имеет строку заголовка и кнопку закрытия, но в нём отсутствуют какие-либо другие элементы управления. Нестандартное диалоговое окно создаётся путем добавления элементов управления в объект UserForm и обычно называемый просто формой (Рис. 5).

Каждый объект UserForm имеет свойства, методы и события, наследуемые им от класса объектов UserForm.

Каждый объект UserForm также содержит модуль класса, в который пользователь добавляет собственные методы и свойства или вписывает процедуры обработки событий для данной формы.

Возможность создавать создать собственный интерфейс, независимый от среды программы-приложения, например Excel, при помощи экранных форм является одной из наиболее ценных возможностей в VBA.

Экранные формы - это окна различного назначения и вида, созданные пользователем для своего приложения. Они содержат элементы управления, позволяющие пользователю обмениваться информацией с приложением.

VBA использует созданный графический дизайн формы - с настройками свойств формы и элементов управления - для получения всей информации, необходимой для отображения диалогового окна: размеров диалогового окна, элементов управления в нём и т.п. В результате VBA позволяет отобразить форму диалогового окна с помощью единственной инструкции.

Для отображения нестандартного диалогового окна используется метод Show объекта UserForm. Если в настоящий момент форма не загружена в память, метод Show загружает форму и отображает её. Если форма уже загружена, метод Show просто отображает её.

Отображения одного диалогового окна для выполнения задачи обычно недостаточно. Почти всегда требуется определить состояние элементов управления диалогового окна с целью выяснить, какие данные или опции выбрал пользователь. Например, если диалоговое окно используется для получения от пользователя информации о том, по каким столбцам и строкам должно выполняться упорядочение рабочего листа, необходимо иметь возможность выяснить, какие значения пользователь ввел после закрытия диалогового окна и до действительного начала операции упорядочивания.

В других случаях может потребоваться динамическое изменение заголовков кнопок (или других элементов управления) диалогового окна, динамическое обновление надписи или поля, связанного со счетчиком, или динамическое подтверждение введенных в диалоговое окно данных.

В VBAпоявляется возможность значительно расширить набор функций встроенных в стандартное приложение, например MicrosoftExcel, а также создавать функции, значения которых зависят от некоторых условий и событий.

VBA позволяет программировать табличные функции. Чтобы создать отдельный рабочий лист для программного модуля, предусмотрена закладка Insert Module из меню Visual, команда Module из меню Insert Macro. После этого появится новый рабочий лист "Modele1". В программном модуле нужно описать функцию на языке VBA. В окне программного модуля можно работать, как в окне небольшого текстового редактора.

Встраивание функций осуществляется командой Object Browser из меню View. Функции, определенные пользователем, рассматриваются в программе как самостоятельные объекты. VBA обладает значительным набором встроенных функций, разделяя их на типы.

Visual Basic позволяет резервировать переменные, с указанием размера и без него, работать с различными типами данных, использовать константы, работать с математическими операторами и функциями, использовать дополнительные операторы. Предусмотрено использование операторов циклов For Next, Do, объектов типа “таймер” (невидимый секундомер в программе). Точность установления времени в программе составляет 1 миллисекунду, или 1/1000 сек. Запущенный таймер постоянно работает - т.е. выполняется соответствующая процедура обработки прерывания через заданный интервал времени - до тех пор, пока пользователь не остановит таймер или не отключит программу.

В VBA можно задать любое свойство для формы, включая заголовок, размер, тип рамки, цвет фона и символов, шрифт текста и фоновый рисунок.

Если обобщить все функции программы, то Visual Basic forApplication позволяет:

1) работать со средствами управления

Достоинства :

1. Высокая скорость создания приложений с графическим интерфейсом для MS Windows.

2. Простой синтаксис, позволяющий очень быстро освоить язык.

3. Возможность компиляции как в машинный код, так и в P-код (по выбору программиста). В режиме отладки программа всегда (вне зависимости от выбора) компилируется в P-код, что позволяет приостанавливать выполнение программы, вносить значительные изменения в исходный код, а затем продолжать выполнение: полная перекомпиляция и перезапуск программы при этом не требуется.

4. Защита от ошибок, связанных с применением указателей и доступом к памяти. Этот аспект делает Visual Basic приложения более стабильными, но также является объектом критики.

5. Возможность использования большинства WinAPI функций для расширения функциональных возможностей приложения. Данный вопрос наиболее полно исследован Дэном Эпплманом, написавшим книгу «Visual Basic Programmer"s Guide to the Win32 API».

Критика :

1. Часто критике подвергаются такие аспекты Visual Basic, как возможность отключить средства слежения за объявленными переменными, возможность неявного преобразования переменных, наличие типа данных «Variant». По мнению критиков, это даёт возможность писать крайне плохой код. С другой стороны, это можно рассматривать как плюс, так как VB не навязывает «хороший стиль», а даёт больше свободы программисту.

2. Отсутствие указателей, низкоуровневого доступа к памяти, ASM-вставок. Несмотря на то, что парадигма Visual Basic позволяет среднему VB-программисту обходиться без всего этого, перечисленные вещи также нередко становятся объектами критики. И хотя, используя недокументированные возможности и определённые ухищрения, всё это можно реализовать и на VB (например, с помощью функций для получения указателей VarPtr(), StrPtr() и ObjPtr()); пользоваться этими трюками гораздо сложнее, чем, например, на Си++.

Однако стоит отметить, что все недостатки языка вытекают из его основного достоинства - простоты разработки графического интерфейса. Поэтому многие программисты используют Visual Basic для разработки интерфейса пользователя, а функциональность программы реализуют в виде динамически подключаемых библиотек (DLL), написанных на другом языке (чаще всего C++).

4. Практическая часть

4.1 Постановка задачи

Составить блок-схему и написать программу на языке Pascal. Рассчитать внутреннюю стоимость ценных бумаг. Внутренняя стоимость актива определяется будущим потоком доходов от этого актива

pv – текущая внутренняя стоимость акции

c – ожидаемое поступление от рассматриваемого актива

r – норма доходности, ожидаемая инвестором для дохода с соответствующим уровнем риска

n – фактор времени (в месяцах).

Выполнить анализ рынка и упорядочить результат по возрастанию полученных данных.

4.2 Текст программы на языке Pascal

pv: array of real;

writeLn (‘Введите ожидаемое поступление от ‘,i,’-го актива c:’);

writeLn (‘Введите норму доходности, ожидаемую инвестором r:’);

pv:=c/exp(ln(1+r)*i);

writeLn (‘текущая внутренняя стоимость актива равна’, pv[i]:1:3);

writeLn (‘Внутренняя стоимость актива равна’, s);

for j:=1 to 4 do

if pv[j] > pv then

writeLn (‘Стоимость активов, отсортированная по возрастанию’);

for i:=1 to 5 do

writeLn (pv[i]:1:3);

4.3 Контрольный пример

4.4Результат выполнения программы на контрольном примере

Заключение

Итак, подытожив все вышесказанное, следует отметить, что инструментальное программное обеспечение является одним из видов программного обеспечения, обладая его общими задачами и функциями.

Однако, являясь узкоспециализированным видом программного обеспечения, обладает определенным набором уникальных свойств и функций, обеспечивающих решение свойственных ему задач.

Необходимо отметить наметившуюся тенденцию к упрощению процесса программирования и создания определенного подкласса – полупрофессиональное программирование для прикладных целей.

Именно это позволит опытному пользователю компьютера, но не профессиональному программисту, создавать некие приложения и небольшие исполняемые в среде MicrosoftOffice файлы, используемые в первую очередь для целей учета и обеспечения документооборота в небольших компаниях.

Именно с этой целью Microsoft был разработан программный комплекс VisualBasicforApplication, позволяющий облегчить процесс программирования и давший возможность заниматься прикладным программированием пользователям, а не программистам. Данная возможность была реализована в первую очередь путем создания раздела программы – «Редактор сценариев» и возможности записывать и исполнять «Макросы», как отдельную разновидность графически программируемых модулей. Реализована возможность создания приложений с графическим интерфейсом для MS Windows. Также достоинством данного вида инструментального программного обеспечения является простой синтаксис, позволяющий очень быстро освоить язык, и применять его для программирования во всех стандартных приложениях MicrosoftOffice.

Поэтому трудно переоценить значение инструментального обеспечения в целом, и VisualBasicforApplication в частности, хотя недостатки, а о них было сказано выше, также имеют место. Но это скорее даже не негативные стороны продукта, а ориентиры для дальнейшего совершенствования инструментального обеспечения в лице VisualBasicforApplication.

1. Алгоритмические языки реального времени /Под ред. Янга С./ 2004 г.

2. Журнал PC Magazine Russian Edition №2 2008г. Компьютер сегодня.

3. Информатика. /Под ред. Могилев А.В., Пак Н.И., Хеннер Е.К/ – М.: ACADEMIA, 2000.

4. Информатика и информационные технологии: Учебник /Под ред. Романова Д.Ю./ ООО «издательство «Эксмо», 2007.

5. Новейшая энциклопедия персонального компьютера /Под ред. Леонтьева В. /Москва, 1999 год. – 271 с.

6. Новые языки программирования и тенденции их развития /Под ред. Ушковой В./ 2001 г.

7. Педагогика /Под ред. Пидкасистого П.И./ – М.: Педагогическое общество Россия, 2000.

8. Программирование для Microsoft Excel 2000 за 21 день. /Под ред. Хариса М./ – М.: Вильямс, 2000.

9. Симонович С. Информатика: базовый курс. Учеб. для ВУЗов. СПб, Питер, 2002 г.

10. С Excel 2000 без проблем. /Под ред. Ковальски/ – М.: Бином, 2000.

11. «Эффективная работа в Windows 98» /Под ред. Стинсона К./ 2000 год. – 247 с.

12. Языки программирования. кн.5 /Под ред. Ваулина А.С./ 2003 г.

13. Языки программирования: разработка и реализация /Под ред. Терренса П./ 2001 г.

14. Электронный учебник по информатике. Алексеев Е.Г. http://www.stf.mrsu.ru/economic/lib/Informatics/text/Progr.html\