Какими способами измеряют электрическое сопротивление. Метод преобразования сопротивления в интервал времени

При измерении сопротивлений в зависимости от их значений и необходимой точности измерения применяются различные способы.

Измерение сопротивлений методом амперметра – вольтметра. Метод определения сопротивлений с помощью амперметра и вольтметра является косвенным, так как в этом случае по показаниям приборов I и U , пользуясь законом Ома, находят искомое сопротивление:

(1)

При измерении сопротивления этим методом приборы могут быть включены двумя способами (рис. 1), причем и в том, и в другом случае результаты не будут точными, если не ввести соответствующие поправки.

Рисунок 1 Схема измерения сопротивления с помощью амперметра и вольтметра.

Когда на схеме рис. 1 переключатель находится в положении 1, ошибка в определении сопротивления r X обусловливается тем, что вольтметр измеряет не только напряжение на сопротивлении, но и потерю напряжения в сопротивлении амперметра r A . Когда измеряемое сопротивление значительно больше сопротивления амперметра (r X »r A) , тогда падением напряжения в сопротивлении r A можно пренебречь и вычислять искомое сопротивление непосредственно по показаниям приборов по формуле (1). Если же сопротивления (r X ≈r A) , соизмеримы по значению, то для получения более точного результата необходимо пользоваться формулой:


(2)

Когда на схеме (рис. 1) переключатель находится в положении 2, ошибка в определении сопротивления r X обусловливается тем, что амперметр показывает сумму двух токов, один из которых (I X) проходит через неизвестное сопротивление r X , другой (I U) проходит через вольтметр: I=I X +I U . Если при этом измеряемое сопротивление значительно меньше сопротивления вольтметра (r X «r U) , то током I U , проходящим через вольтметр, можно пренебречь и искомое сопротивление можно вычислить непосредственно по показаниям приборов, воспользовавшись формулой (1). Если же эти сопротивления соизмеримы по значению, то для получения более точного значения r X пользуются формулой:

(3)

Рассмотренный косвенный метод измерения сопротивлений не всегда удобен, так как требует затрат времени на дополнительные вычисления. Кроме того, он отличается невысокой точностью из-за влияния внутренних сопротивлений приборов.

Измерение сопротивлений омметром. Для непосредственного измерения сопротивлений служат специальные приборы – омметры, которые представляют собой комбинацию магнитоэлектрического миллиамперметра и специальной измерительной схемы (рис. 2).

Рисунок 2. Схема измерения омметра.

Шкалу такого прибора градуируют в омах. На схеме (рис. 2) последовательно с миллиамперметром r A включены резистор с сопротивлением r X , регулируемый добавочный резистор с сопротивлением r Р и источник питания. В этом случае шкала прибора обратная, так как с увеличением измеряемого сопротивления ток в приборе уменьшается:

(4)

где U рабочее напряжение омметра. При неизменном U показание прибора зависит только от измеряемого сопротивления r X , так как каждому значению r X соответствует определенное значение тока I X . Это позволяет шкалу миллиамперметра отградуировать в омах.

Показания омметров зависят от значения э. д. с. источника питания, которая с течением времени уменьшается, что является существенным недостатком этих приборов. Для того чтобы при изменении э. д. с. источника рабочее напряжение U оставалось постоянным, омметры снабжают специальным добавочным сопротивлением r Р , с помощью которого регулируют прибор перед измерением (регулировка нуля) .

На практике чаще всего применяются омметры, показания которых не зависят от э. д. с. источника питания. В качестве таких омметров используют магнитоэлектрические логометры – приборы, у которых отсутствует механическое устройство для создания противодействующего момента. Магнитоэлектрический логометр состоит из двух катушек, закрепленных на одной оси под углом 90° и жестко связанных друг с другом.

Катушки помещены в поле постоянного магнита (рис. 10.12).

Рисунок 2. Устройство логометра.

Токи к ним подводятся от общего источника питания через гибкие проводники, которые практически не создают противодействующего момента. Последовательно с одной из катушек включен постоянный добавочный резистор с сопротивлением r Д а в цепь другой катушки – резистор с измеряемым сопротивлением r X . Катушки с последовательно включенными сопротивлениями образуют две параллельные цепи. При этом токи, протекающие через катушки, соответственно равны и , где r 1 , и r 2 соответственно сопротивления катушек.

Под действием токов, протекающих через катушки, создаются два вращающих момента, направленных встречно друг другу и зависящих от положения катушек в пространстве и

где – коэффициенты пропорциональности, зависящие от положения катушек в магнитном поле; α – угол отклонения плоскости катушки 1 относительно вертикальной оси OO¢.

Под влиянием вращающих моментов подвижная система прибора поворачивается до тех пор, пока не окажется в равновесном состоянии при М 1 =М 2 .Отсюда или

(5)

Из (5) следует, что отклонение подвижной системы прибора определяется только отношением токов. Угол отклонения подвижной системы прибора при неизменных значениях сопротивлений r 1 ,r 2 ,r Д , зависит только от измеряемого сопротивления r X и не зависит от напряжения источника питания. Последнее обстоятельство является существенным при использовании логометров в качестве приборов, предназначенных для измерения неэлектрических величин.

В цепях переменного тока применяют логометры электромагнитной и электродинамической систем. Логометры электромагнитной системы используют для измерения частоты, емкости, индуктивности и других величин. Электродинамические логометры применяют для измерения различных величин в цепях переменного тока. В частности, их широко используют в качестве фазометров.

Измерение сопротивлений мостовым методом. Мостовой метод (рис. 3) позволяет наиболее точно измерять сопротивления.

Рисунок 3. Схема мостового измерения сопротивлений.

В одно из плеч моста включают резистор с сопротивлением r X , а в другие три плеча – регулируемые и известные по значению сопротивления r 1 ,r 2 ,r 3 . К точкам моста а и b подключен источник питания постоянного тока, а в диагональ моста между точками c и д включен магнитоэлектрический гальванометр Г. При измерении сопротивления r X значения трех других сопротивлений изменяют таким образом, чтобы наступило равновесие моста, при котором ток в цепи гальванометра становится равным нулю. Равновесие моста наступает при условии, когда разность потенциалов между точками с и д равна нулю. Поэтому при равновесном состоянии моста как через плечи ас и сb проходят одинаковые токи: I 1 =I 2 ; так и через плечи ад и дb: I 3 =I 4 . Исходя из этого, для схемы (рис.3) можно записать:

(6)

Наряду с уравновешенными мостами для измерения сопротивлений широко применяются неуравновешенные мосты, позволяющие более быстро производить измерение сопротивлений (но менее точно, так как их показания зависят от стабильности напряжения источника питания). Значение измеряемого сопротивления в этих мостах определяют непосредственно по показаниям прибора. В неуравновешенных мостах часто используют в качестве измерительного прибора магнитоэлектрические логометры, позволяющие повысить точность измерения.

Уравновешивание мостов можно производить вручную или автоматически. Автоматическое уравновешивание применяют в тех случаях, когда необходимо следить за изменением измеряемого сопротивления и управлять его значением.

Электрические цепи представляют собой совокупность соединенных друг с другом элементов - источников электрической энергии и нагрузок в виде резисторов, катушек индуктивности, конденсаторов. При определенных допущениях эти нагрузки можно рассматривать как линейные пассивные двухполюсники с сосредоточенными постоянными, характеризуемые некими идеальными параметрами - сопротивлением R , индуктивностью L , емкостью С .

С учетом остаточных параметров конденсатор, катушку индуктивности или резистор можно характеризовать некоторым эффективным значением емкости, индуктивности, сопротивления, которые зависят от частоты. Поэтому эффективные параметры компонентов необходимо измерять на рабочих частотах, если их влиянием на результат измерения нельзя пренебречь.

В зависимости от объекта измерений, требуемой точности результата, диапазона рабочих частот и других условий для измерения параметров двухполюсников применяют различные методы и средства измерений. Наиболее распространенными являются следующие методы измерения: амперметра - вольтметра, непосредственной оценки, мостовой, резонансный и дискретного счета.

Метод амперметра - вольтметра

Измерение методом амперметра - вольтметра сводится к измерению тока и напряжения в цепи с измеряемым двухполюсником и последующему расчету его параметров по закону Ома . Метод может быть использован для измерения активного и полного сопротивления, индуктивности и емкости.

Измерение активных сопротивлений производится на постоянном токе, при этом включение резистора R Х в измерительную цепь возможно по схемам, представленным на рис. 13.1, а и б.

Достоинство метода заключается в простоте его реа-лизации, недостаток - в сравнительно невысокой точно-сти результата измерения, которая ограничена классом точности применяемых измерительных приборов и мето-дической погрешностью. Последняя обусловлена влияни-ем мощности, потребляемой измерительными приборами в процессе измерения, другими словами - конечным значением собственных сопротивлений амперметра R A и вольтметра R V . Выразим методическую погрешность че-рез параметры схемы.


В схеме рис. 13.1,а вольтметр показывает значение напряжения на зажимах R Х , а амперметр — сумму токов I V +I.

Следовательно, результат измерения R , вы-численный по показаниям приборов, будет отличаться от R Х :

Относительная погрешность измерения в процентах

Здесь приближенное равенство справедливо, так как при правильной организации эксперимента предполагается выполнение условия R V >>R Х.

В схеме рис.13.1,б амперметр показывает значение тока в цепи с R Х , а вольтметр - сумму падений напря-жений на R Х U и амперметре U A . Учитывая это, можно по показаниям приборов вычислить результат измере-ния:

Относительная погрешность измерения в процентах в данном случае равна:

Сравнивая полученные выражения относительных по-грешностей, приходим к выводу: в схеме рис. 13.1,а на методическую погрешность результата измерения оказы-вает влияние только сопротивление R V ; для снижения этой погрешности необходимо обеспечить условие ; в схеме рис. 13.1,б на методическую погрешность результата измерения оказывает влияние только R A ; снижение этой погрешности достигается выполнением условия Таким образом, при практическом ис-пользовании данного метода можно рекомендовать пра-вило: измерение малых сопротивлений следует произво-дить по схеме рис. 13.1,а; при измерении больших сопротивлений предпочтение следует отдавать схеме рис. 13.1, б .

Измерение полного сопротивления Z X выполняется на переменном токе частотой f (рис. 13.2). По показаниям вольтметра и амперметра определяют модуль полного сопротивления

где - показания вольтметра и амперметра.

Выполнив аналогично предыдущему анализ методической погрешности, придем к выводу, что схему, представленную на рис. 13.2, а, целесообразно применять при , а на рис. 13.2, б - при .

Измерение емкости и индуктивности методом амперметра - вольтметра может быть выполнено по схемам, аналогичным рис. 13.2, только с заменой Z X , соответственно, на С или L .

Емкостное сопротивление конденсатора

При измерении емкости этим методом необходимо знать частоту источника питания. Для измерения больших емкостей рекомендуется схема а), а для малых емкостей - схема б ).

Измерение индуктивности катушки методом амперметра - вольтметра возможно, если ее сопротивление R L значительно меньше реактивного сопротивления X L . При этом

Откуда .

Если требуется получить более точный результат, то необходимо учесть сопротивление катушки. Так как

Погрешности измерения параметров элементов цепей методом амперметра - вольтметра на низких частотах составляют 0.5-10%. Погрешности измерения возрастают с увеличением частоты.

Мостовой метод

Важным классом средств измерения, предназначенных для измерения параметров элементов электрических цепей методом сравнения, являются мосты. Сравнение измеряемой величины (сопротивления, емкости. Индуктивности) с образцовой мерой при помощи моста в процессе измерения может осуществляться вручную или автоматически, на постоянном или на переменном токе. Мостовые схемы обладают большой точностью, высокой чувствительностью, широким диапазоном измеряемых значений параметров. На основе мостовых методов измерения строятся средства измерения, предназначенные как для измерения какой-либо одной величины, так и универсальные аналоговые и цифровые приборы.

Одинарный мост постоянного тока

Простейшая схема одинарного моста представлена на рис.13.3. Четыре резистора R 1 ,R 2 ,R 3 ,R 4 (их называют плечами моста ) соединены в кольцевой замкнутый контур. Точки соединения сопротивлений называют вершинами моста .

Цепи, соединяющие противоположные вершины, называют диагоналями. Диагональ ab содержит источник питания и называется диагональю питания . Диагональ cd , в которую включен индикатор Г , называется измерительной диагональю . В мостах постоянного тока в качестве индикатора обычно используется гальванометр.

В общем случае зависимость протекающего через гальванометр тока I г от сопротивления плеч, сопротивления гальванометра R г и напряжения питания U имеет вид

Измерение сопротивления может производиться в одном из двух режимов работы моста: уравновешенном либо неуравновешенном. Мост называется уравновешенным, если разность потенциалов между вершинами c и d равна нулю, а, следовательно, и ток через гальванометр равен нулю.

Из (13.1) следует, что I г = 0 при

Это условие равновесия одинарного моста постоянного тока можно сформулировать следующим образом: для того, чтобы мост был уравновешен, произведения сопротивлений противолежащих плеч моста должны быть равны. Если сопротивление одного из плеч моста (например, R 1) неизвестно, то уравновесив мост путем подбора сопротивлений плеч , находим из условия равновесия

В реальных мостах постоянного тока для уравновешивания моста регулируются отношение и сопротивление плеча , которые, соответственно, называют плечами отношения и плечом сравнения.

В состоянии равновесия моста ток через гальванометр равен нулю и, следовательно, колебания напряжения питания и сопротивления гальванометра влияния на результат измерения не оказывают (важно лишь, чтобы чувствительность гальванометра была достаточной для надежной фиксации состояния равновесия). Поэтому основная погрешность уравновешенного моста определяется чувствительностью гальванометра, чувствительностью схемы, погрешностью сопротивлений плеч, а также сопротивлениями монтажных проводов и контактов.

При измерении малых сопротивлений существенным источником погрешности может явиться сопротивление проводов, с помощью которых измеряемый резистор подключается к входным зажимам моста, так как оно полностью входит в результат измерения. Поэтому нижний предел измерения одинарного моста ограничен значениями сопротивления порядка 1 Ом . Верхний же предел измерения 10 6 - 10 8 Ом ограничивается чувствительностью гальванометра. При больших значениях измеряемого сопротивления токи в плечах моста очень малы и чувствительности гальванометра недостаточно для четкой фиксации равновесия. Для измерения малых сопротивлений (от 1 до 10 -8 Ом ) применяют двойные мосты.

Двойной мост постоянного тока . Схема двойного моста представлена на рис. 13.4 .

Для исключения влияния сопротивлений соединительных проводов и переходных сопротивлений контактов измеряемое сопротивление присоединяется по четырехзажимной схеме включения: двумя токовыми зажимами в цепь источника питания моста, а двумя потенциальными - в измерительную цепь. Аналогичные зажимы имеет образцовое сопротивление . В цепь источника питания моста входит регулировочное сопротивление , измеряемое сопротивление , образцовое сопротивление (одного порядка по величине с ) и малого сопротивления .

Сопротивления плеч R 1 ,R 2 ,R 3 и R 4 , входящие в измерительную цепь, выбирают достаточно большими (сотни и тысячи Ом ), поэтому влияние сопротивлений монтажных проводов и переходных сопротивлений в контактах пренебрежимо мало.

При равновесии моста формула для определения сопротивления имеет вид

При соблюдении равенства

и достаточно малом сопротивлении вторым членом формулы (13.3) можно пренебречь. Тогда формула (13.3) упрощается до следующей

Равенство (13.4) должно соблюдаться постоянно, поэтому резисторы R 1 ,R 2 и R 3 ,R 4 регулируются при помощи спаренных органов управления. Резистор представляет собой короткий отрезок медной шины большого сечения.

Промышленностью выпускаются одинарные и одинарно-двойные мосты постоянного тока классов точности от 0.005 до 5.

Измерительные мосты переменного тока

Для измерения емкости, индуктивности, взаимной индуктивности и тангенса угла потерь конденсаторов применяются мосты переменного тока, схемы которых отличаются большим разнообразием. Кроме простых четырехплечих мостовых схем существуют и более сложные мостовые схемы. Эти схемы путем последовательных эквивалентных преобразований могут быть приведены к простой четырехплечей схеме, которая является, таким образом, основной.

Схема одинарного четырехплечего моста переменного тока приведена на рис. 13.5. Так как мост питается напряжением переменного тока, то в качестве индикатора в нем применяются электронные милливольтметры переменного тока, либо осциллографические индикаторы нуля.

В общем случае сопротивления плеч моста переменного тока представляют собой комплексные сопротивления вида . Аналогично соотношению (13.2) условие равновесия одинарного моста переменного тока имеет вид:

Записав это выражение в показательной форме, получим

где - модуль комплексного сопротивления; - фазовый сдвиг между током и напряжением в соответствующем плече.

Соотношение (13.5) распадается на два скалярных условия равновесия:

Отсюда следует, что в схеме моста переменного тока равновесие наступает только при равенстве произведений модулей комплексных сопротивлений противолежащих плеч и равенстве сумм их фазовых сдвигов. При этом нужно иметь в виду, что при изменении значений активных и реактивных составляющих одновременно изменяются и модуль, и фаза, поэтому мост переменного тока можно привести к состоянию равновесия лишь большим или меньшим числом переходов от регулирования одного параметра к регулированию другого.

Второе уравнение (13.6) показывает, какими по характеру должны быть сопротивления плеч мостовой схемы, чтобы обеспечить возможность ее уравновешивания. Так, например, если в двух смежных плечах включены активные сопротивления (φ

Мосты переменного тока работают обычно на низких частотах 100 Гц и 1000 Гц. При работе на повышенных частотах погрешности измерения резко возрастают.

— электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это .

Единица измерения электрического сопротивления — Ом . Обозначается буквой R. Зависимость сопротивления от тока и в замкнутой цепи определяется .

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

(С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

(L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление — это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материало в

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

где,p — удельное сопротивление (единицы измерения ом*м/мм 2);

l — длина проводника (м);

S — поперечное сечение (мм 2).

В радиолюбительской практике иногда требуется измерить малые сопротивления значение которых ниже 1 Ом, например, в случае проверки обмоток трансформаторов на короткое замыкание, контактов реле, различных шунтов,. Как же осуществить измерение малых сопротивлений величиной в милиомы или микроомы? Как известно из курса электротехники, измерение сопротивлений основано на эффекте преобразовании их величины в ток или напряжение. На этом принципе и основывается схема приставки к мультиметру.

Эта простая схема используется при измерении малых значений сопротивления - от 0,001 до 1.999 ом. Нам потребуется отдельный аккумулятор для питания радиолюбительской конструкции. Напряжение питания стабилизируется ИМС LM317LZ. Подстроечное сопротивление необходимо точно настроить на ток 100 мА, чтобы обеспечить высокую точность и малую погрешность.

Печатная плата показана на рисунке ниже и ее проще всего сделать по . При сборке конструкции постарайтесь сократить длину монтажных проводов до минимума.

На экран стандартного цифрового мультиметра D830 будет выведено значение в Омах, от 0,001 до 1.999 Ом. Для проверки прибора определите номинал несколько параллельно соединённых одноомных сопротивлений.

Если хотите, то можете спаять не просто приставку, а полностью готовый самостоятельный прибор. В этом аналоговом милиомметре применяются два режима определения сопротивления. При стабильном токе в 1А шкала 1 деление = 0,002 Ом и при стабильном токе 0,1А шкала 1 деление = 0,02 Ом. При токе в 0,1А прибор сможет определить сопротивление от 0,02 Ома до одного Ома.


Принцип работы устройства основан в определении падения напряжения на измеряемом сопротивлении при прохождении через него заданного стабильного тока. Сопротивление рамки у стрелочного измерительного устройства 1200 Ом, ток полного отклонения равен 0,0001 А, значит, если мы применим этот индикатор в роли вольтметра, необходимо подать на него напряжение U = IхR = 0,0001х1200 = 0,12 В = 120 мВ для отклонения стрелки на последнее деление шкалы. Именно это напряжение должно упасть на сопротивлении в 1 Ом на пределе измерения прибора от 0,02 Ома до 1 Ома. Значит на этом пределе нам требуется пропустить через измеряемый резистор стабильный ток I = U/R = 0,12/1 = 0,12A = 120 мА. По аналогии рассчитываем предел и для других значений.

Принцип работы этой схемы основывается на методе измерении падения напряжения на измеряемом сопротивлении при заранее известном значении тока протекающего через него. На транзисторе VT1 создает постоянное значение тока, а его стабильность поддерживает операционный усилитель, который осуществляет управление VT1.


номинал постоянного тока в момент измерения сопротивлений до 20 Ом -10 мА и 100 мА при измерении до 2 Ом. Для стабильной работы приставки, микросхема DA1, запитана от стабилизатора напряжения 78L05. Тумблером SA1 осуществляется выбор предела измерений. Кнопку SA3 нажимаем только в момент измерений. Для защиты вольтметра в схему добавлен диод VD1.

Настройка конструкции

Сперва ручки переменных сопротивлений R2 и R5 устанавливаем в средние положения. затем на конструкцию подают напряжение 8-24 В. Постоянную величину тока, протекающего через замеряемое сопротивление, задаем следующим методом. Необходимо щупы точного амперметра подключить к зажимам измеряемого сопротивления. Переключатель SA1 поставить в положение замера сопротивлений до 2 Ом, затем нажимаем на SA3 и путем изменения переменного сопротивления R5 выставляем ток 100 мА. Далее SA1 установить в положение до 20 Ом, нажимаем SA3 уже R2 настраивают ток 10 мА. Повторяют это способ калибровки тока несколько раз, а затем движки переменных сопротивлений покрыть лаком или краской.

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ПОСТОЯННОМУ ТОКУ

Основными методами измерения сопротивления постоянному току являются: косвенный метод; метод непосредственной оценки и мостовой метод.
Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности.
Наиболее универсальным из косвенных методов является метод амперметра-вольтметра.
Метод амперметра-вольтметра. Основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (рис. 1.9,а) и измерение малых сопротивлений (рис. 1.9,б). По результатам измерения тока и напряжения определяют искомое сопротивление.
Для схемы рис. 1.9,а искомое сопротивление и относительная методическая погрешность измерения определяются

Где Rx - измеряемое сопротивление; Rа - сопротивление амперметра.
Для схемы рис. 1.9,6 искомое сопротивление и относительная методическая погрешность измерения определяются

где Rв -сопротивление вольтметра.
Из определения относительных методических погрешностей следует, что измерение по схеме рис. 1.9,а обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме рис. 1.9,6 - при измерении малых сопротивлений.
Погрешность измерения по данному методу рассчитывается по выражению

где γ в, γ a , - классы точности вольтметра и амперметра;
U п, I п пределы измерения вольтметра и амперметра.
Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежании нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального.


Рис. 1.9. Схема измерения больших (а) и малых (б) сопротивлений методом амперметра-вольтметра.
Рекомендуется проводить 3 - 5 измерений при различных значениях тока. За результат, в данном случае, принимается среднее значение измеренных сопротивлений.
При измерениях сопротивления в цепях, обладающих большой индуктивностью, вольтметр следует подключать после того как ток в цепи установится, а отключать до разрыва цепи тока. Это необходимо делать для того, чтобы исключить возможность повреждения вольтметра от ЭДС самоиндукции цепи измерения.

измерение сопротивления проводников присоединения к земле и выравнивания потенциалов (металлосвязь) (2p);
измерение сопротивления заземляющих устройств по трёхполюсной схеме (3p);
измерение сопротивления заземляющих устройств по четырехполюсной схеме (4p);
измерение сопротивления многократных заземляющих устройств без разрыва цепи заземлителей (с применением токоизмерительных клещей);
измерение сопротивления заземляющих устройств методом двух клещей;
измерение сопротивления молниезащит (громоотводов) по четырехполюсной схеме импульсным методом;
измерение переменного тока (ток утечки);
измерение удельного сопротивления грунта методом Веннера с возможностью выбора расстояния между измерительными электродами; высокая помехоустойчивость;

Метод непосредственной оценки. Предполагает измерение сопротивления постоянному току с помощью омметра. Измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации. На практике применяют омметры типа М57Д, М4125, Ф410 и др. Диапазон измеряемых сопротивлений данных приборов лежит в пределах от 0,1 Ом до 1000 кОм.
Для измерения малых сопротивлений, например сопротивление паек якорных обмоток машин постоянного тока, применяют микроомметры типа М246. Это приборы логометрического типа с оптическим указателем, снабженные специальными самозачищающими щупами.
Также для измерения малых сопротивлений, например переходных сопротивлений контактов выключателей, нашли применение контактомеры. Контактомеры Мосэнерго имеют пределы измерения 0 - 50000 мкОм с погрешностью менее 1,5%. Контактомеры КМС-68, КМС-63 позволяют производить измерения в пределах 500-2500 мкОм с погрешностью менее 5%.
Для измерения сопротивления обмоток силовых трансформаторов, генераторов с достаточно большой точностью применяют потенциометры постоянного тока типа ПП-63, КП-59. Данные приборы используют принцип компенсационного измерения, т. е. падение напряжения на измеряемом сопротивлении уравновешивается известным падением напряжения.

Мостовой метод. Применяют две схемы измерения - схема одинарного моста и схема двойного моста. Соответствующие схемы измерения представлены на рис. 1.10.
Для измерения сопротивлений в диапазоне от 1 Ом до 1 МОм применяют одинарные мосты постоянного тока типа ММВ, Р333, МО-62 и др. Погрешность измерений данными мостами достигает 15% (мост ММВ). В одинарных мостах результат измерения учитывает сопротивление соединительных проводов между мостом и измеряемым сопротивлением. Поэтому сопротивления меньше 1 Ом такими мостами измерить нельзя из-за существенной погрешности. Исключение составляет мост P333, с помощью которого можно производить измерение больших сопротивлений по двухзажимной схеме и малых сопротивлений (до 5 10 Ом) по четырехзажимной схеме. В последней почти исключается влияние сопротивления соединительных проводов, т. к. два из них входят в цепь гальванометра, а два других - в цепь сопротивления плеч моста, имеющих сравнительно большие сопротивления.


Рис. 1.10. Схемы измерительных мостов.
а - одинарного моста; б - двойного моста.
Плечи одинарных мостов выполняют из магазинов сопротивлений, а в ряде случаев (например, мост ММВ) плечи R2, R3 могут быть выполнены из калиброванной проволоки (реохорда), по которой перемещается движок, соединенный с гальванометром. Условие равновесия моста определяется выражением Rх = R3 (R1/R2). С помощью R1 устанавливают отношение R1/R2, обычно кратное 10, а с помощью R3 уравновешивают мост. В мостах с реохордом уравновешивания достигается плавным изменением отношения R3/R2 при фиксированных значениях R1.
В двойных мостах сопротивления соединительных проводов при измерениях неучитываются, что представляет возможность измерять сопротивления до 10-6 Ом. На практике применяют одинарно-двойные мосты типа P329, P3009, МОД-61 и др. с диапазоном измерений от 10-8 Ом до 104 МОм с погрешностью измерения 0,01 - 2%.
В этих мостах равновесие достигается изменением сопротивлений R1, R2, R3 и R4. При этом достигается равенства R1 = R3 и R2 = R4. Условие равновесия моста определяется выражением Rх= RN (R1/R2). Здесь сопротивление RN - образцовое сопротивление, составная часть моста. К измеряемому сопротивлению Rх подсоединяют четыре провода: провод 2 - продолжение цепи питания моста, его сопротивление не отражается на точности измерений; провода 3 и 4 включены последовательно с сопротивлениями R1 и R2 величиной больше 10 Ом, так что их влияние ограничено; провод 1 является составной частью моста и его следует выбирать как можно короче и толще.
При измерениях сопротивления в цепях, обладающих большой индуктивностью, во избежание ошибок и для предотвращения повреждений гальванометра необходимо производить измерения при установившемся токе, а отключение - до разрыва цепи тока.
Измерение сопротивления постоянному току независимо от метода измерения производят при установившемся тепловом режиме, при котором температура окружающей среды отличается от температуры измеряемого объекта не более чем на ±3°С. Для перевода измеренного сопротивления к другой температуре (например, с целью сравнения, к 15°С) применяют формулы пересчета.

На методе амперметра-вольтметра основаны измерения приборами СОНЭЛ. Измерение больших сопротивлений - это измерители сопротивления электроизоляции серии MIC , малых сопротивлений - это микроомметры MMR-600, MMR-610 и др.. Измерители MMR оснащены источниками стабилизированого тока, аналогово-цифровыми преобразователями, токовыми и потенциальными разъемами подключения, переключателем направления тока для исключения погрешностей измерения в случаях с термо-ЭДС, управление от микроконтроллера, цифровая индикация результатов, связь с компьютером.
Погрешность измерения - 0,25 % с разрешением от 0,1 мкОм (MMR-610).