Общие тенденции совершенствования средств вычислительной техники. Современные тенденции развития средств вычислительной техники

Появление ПК справедливо считают грациозной научно-технической революцией, сравнимой по масштабам с изобретением электричества, радио. К моменту рождения ПК вычислительная техника уже существовала четверть века. Старые ЭВМ были отделены от массового пользователя, с ними работали специалисты (электронщики, программисты, операторы). Рождение ПК сделало ЭВМ массовым инструментом. Облик ЭВМ кардинально изменился: она стала дружественной (т.е. способной вести культурный диалог с человеком на визуально комфортном экране). В настоящее время в мире используются сотни миллионов ПК как на производстве, так и в повседневной жизни.

Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

Уже сейчас на смену универсальным компьютерам приходят новые устройства - смартфоны, решающие конкретный спектр задач своего владельца. Развивается система карманных компьютеров.

Характерной чертой компьютеров пятого поколения обязано быть внедрение искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут просто управляемы. Пользователь сумеет голосом подавать машине команды.

Предполагается, что XXI век будет веком наибольшего использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер внедрения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким спектром функциональных возможностей и черт.

Более перспективные, создаваемые на базе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы. Вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные сервисы: электронную почту, системы телеконференций и информационно-справочные системы. Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

В последние годы, при разработке новых ЭВМ большее внимание уделялось сверхмощным компьютерам - суперЭВМ и миниатюрным, и сверхминиатюрные ПК. Ведутся поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, нейрокомпьютеров. В частности, в нейрокомпьютерах могут употребляться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Примерная характеристика компьютеров шестого поколения.

В прошедшем столетии были сделаны многие открытия и изобретения, сыгравшие революционную роль в развитии современной цивилизации.

    создание и развитие средств связи, особенно беспроводной.

    Изобретение кинематографа.

    Возникновение и развитие авиации и космической техники. Современные летательные аппараты по своим техническим и конструктивным характеристикам не сопоставимы с первыми летательными аппаратами.

    Но наиболее разительный прогресс произошел в области вычислительной техники. (ок 50 лет назад первые ЭВМ имели вез ок. 30 тонн, площадь ок. 200м 2)

время выполнения вычислений измерялось часами или сутками.

Теперь ЭВМ можно разместить на кремниевом кристалле S=5мм 2 , время выполнения расчетов – микросекунды, стоят мало.

При этом в отличие от 1ых ЭВМ, которые программируют в математических кодах и способны были выполнять главным образом только громоздкие математические вычисления, то современные ЭВМ способны доказывать теоремы, переводить текст, воспроизводить движущиеся объекты.

Появление первой машины для выполнения четырех арифметических действий дотируется началом 17 в. (1623 г В. Шикард изобрел мех. машину сложения, вычитания, частично умножения и деления), но более известным оказался настольный арифмометр (1642г.) франц. ученым Паскалем. 1671г. Лейбниц изобрел т.н. зубчатое колесо Лейбница, позволяющее выполнять 4 арифметические операции.

В 19 в. обострилась потребность в выполнении вычислении, связанных с обработкой результатов астрономических наблюдений, расчеты, связанные с составление математических таблиц. Поэтому в 1823 англ. математик Чарльз Бэббидж начал разрабатывать автоматизированную разностную машину, приводимую в действие паровым двигателем.

Машина должна была вычислять значения полиномов и печатать результаты на негативе для фотопечати, однако существующее в то время технические средства не дали возможности завершить воплощение этой идеи, а кроме того, сам Бэббидж увлекся проектированием более мощной счетной машины. Новая счетная машина Бэббиджа получила название «аналитическая».

1894 г. он изложил ее основные принципы, которые были воплощены в ткацком станке программы с перфокарточным управлением француза Жаккаром.

Аналитическая машина явилась одной из первых программируемых автоматических вычислительных машин с последовательным управлением. Она имела арифметическое устройство и память.

Меценат проекта была графиня Ада Августа Лавлейс – первый женщина программист. В честь ее назван язык программирования «Ада».

В конце 19 в. Холлерит разработал машину с перфокарточным вводом, способную автоматически классифицировать и составлять таблицу данных. Она была использована в 1890 г. в Америке на ней проведены переписи населения. Программа считывалась с перфокарты с помощью электроконтактных щеток. В качестве цифровых счетчиков – эм реле.

1896 г. Хоррелит основал фирму, предшественницу IBM.

После смерти Бэббиджа заметно прогрессов не было.

скорость вычисление механич. или элетромех. машин была ограничена, поэтому в 30хх гг. 20 в началась разработка электронных вычислительных машин (ЭВМ). На основе вакуумных 3х электродных лампах (триодах), которые изобрел в 1906 Лид Фрест.

Первая универсальная ЭВМ «Эниак» была разработана в пенсильваском институте США (1940-1946 г.) – разработка численных таблиц для вычисления траектории полета объектов. (18 тыс. электронных плат, 140 кВт, 10ая СС, программировалась вручную с помощью переключателей.

Современные тенденции развития средств вычислительной техники.

В настоящее врем в мире происходит переход от индустриального общества к информационному. Если главным содержанием индустриального общества было производство и потребление мат. благ, то движущей силой информационного общества является создание и потребление информационных ресурсов различного типа и назначения. При этом достижение экономических и социальных результатов определяется не сколько и не столько наличием мат.-энергетических ресурсов, сколько масштабом и темпами информатизации общества и широким использованием информационных технологий во всех сферах человеческой деятельности.

Независимость от различия и особенностей процессов информации в различных областях общественной жизни для них характерно наличие 3х составляющих:

    идентичность (единообразие) основных средств производства (средства выч. техники и информатики)

    идентичность «сырья» (исходные данные, подлежащие анализу и обработке)

    Идентичность выпускаемой продукции («обработанная» информация)

Ключевая роль в инфраструктуре информации принадлежит системным телекоммуникациям, а также выч. системам и их сетям.

В этих областях сосредоточены новейшие средства выч. техники, информатики и связи, а также используются наиболее прогрессивные информационные технологии.

В прошедшей истории развития ЭВТехники (начавшиеся с 40х гг 20в) можно выделить 4 поколения ЭВМ, отличающихся между собой элементной базой, функционально логической организацией, конструктивно-тех. исполнением, программным обеспечением, тех и эксплуатационным характеристиками режимами пользования.

Смене поколений сопутствовала изменение тех-эксплуатацион и тех-

экономических показателей ЭВМ.

В первую очередь это:

быстродействие, емкость памяти, надежность, стоимость.

Одновременно этому сопутствовала тенденция совершенствования программного обеспечения и повышение эффективности использования и обращения к ней.

В настоящее время ведутся работы над создание ЭВМ 5ого поколения, которые приблизили реальность создание искина.

Классификация средств эвТехники

К настоящему времени в мире уже произведенные работают и вновь создаются миллионы ЭВМ различного типа, класса и уровня.

ЭВТ принято делить на аналоговую и цифровую.

В АВМ информация представляется соответствующими значениями тех или иных аналогов (непрерывных физ. величин) – тока, напряжения, угла поворота и т.д.

АВМ обеспечивают приемлемое быстродействие, но умеренную точность вычислений ок. 10 -2 -10 -3

АВМ имеют достаточно ограниченное распространение и применяются главным образом в НИИ и проектно-конструкторских организациях при разработке исследований и совершенстве след. образцов техники, т.е. АВМ относятся к области специализируемых ЭВМ.

Более широкое распространение получили ЦВМ, в которых информация отображается с помощью цифровых или бинарных кодов.

Быстрые темпы развития и смены моделей ЦВМ затрудняют использование какой-либо их стандартной классификации.

Академик Глужков отмечал, что можно выделить 3 глобальных сферы, требующие использования качественно различных типов ЭВМ, а и.:

    традиционное применение ЭВМ для автоматизированных вычислений

    использование ЭВМ в различных системах управления (с 60х гг - сфера в наибольшей степени предполагает использование линии ЭВМ)

Машины этого профиля должны отвечать след. требованиям:

    более дешевыми по сравнению с большими централизованными ЭВМ.

    более надежными, особенно при работе непосредственно в контуре управления.

    обладать большей гибкостью и адаптивностью к условиями работы

    было архитектурно прозрачным, т.е. структура и функции ЭВМ должны быть понятны широкому пользователю.

3. Для решения задач искусственного интеллекта.

Рынок ЭВМ имеет широкий диапазон классов и моделей ЭВМ. Например, IBM, выпускающий приблизительно 80% мирового машинного парка производит главным образом 4 класса компьютеров:

    большие ЭВМ (mainframe ) – многопользовательские машины с централизованной обработкой информацию и различными формами удаленного доступа. По оценкам специалистов IBM ок. 50% всего объема данных в информационных системах мира должны хранится в больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов.

Развитие ЭВМ данного класса имеет большое значение и для РФ, т.к. у нас имеется огромный задел по программе ЕС ЭВМ, заимствовавших архитектуру IBM 360 / 310 , поэтому принято решение продолжить развитие этого направления и в 1993 г. с IBM было подписано соглашение, согласно которому РФ получила право производить 23 вида новейших моделей – аналогов IBM с производительностью от 1,5 до 167 миллионов операций в сек.

    Машины RS / 6000 , у которых высокая производительность и предназначены для построения работы станций, для работы с графикой, для UNIX серверов и кластерных комплексов для научных исследований.

    Средние ЭВМ в первую очередь для работы в финансовых структурах (бизнес компьютеры). В них особенное внимание уделяется сохранению и безопасности данных, также программной совместимости. Эти машины используются в качестве серверов локальных сетей.

    Компьютеры на платформе микропроцессоров Intel

    Вычислительные системы, использующие параллельную работу.

Можно использовать след. классификацию средств ЭВМ на основе их разделения по быстроте действия :

    супер ЭВМ , для решения сложных вычислительных задач и для обслуживания крупнейших информационных банков данных

    большие ЭВМ , для ведомств, территориальных и региональных вычислительных центров.

    средние ЭВМ , для АСУТП (АСУ технологического процесса) и АСУП (производства), а также для управления распределенной обработкой информации в качестве серверов.

    персональные и профессиональные ЭВМ на их базе формируются АРМ (автоматизированные рабочие места) для специалистов различного профиля.

    встраиваемые микропроцессоры (микро ЭВМ) для автоматизированного управления отдельными устройствами и механизмами.

РФ испытывает потребность:

Супер ЭВМ ~ 100-200 шт.

Большие ЭВМ ~ 1000 шт.

Средние ЭВМ ~ 10 4 -10 5 шт

Классификация компьютеров

Номенклатура видов компьютеров в настоящее время огромна: машины различаются по назначению, мощности, размерам, используемой элементной базе, совместимости, устойчивости по отношению к воздействию неблагоприятных условий и т. д. Для наших целей наиболее интересно сгруппировать компьютеры по производительности, габаритным характеристикам (размеры, вес) и по назначению. Заметим сразу, что классификация в известной мере условна, так как границы между группами размыты и очень подвижны во времени: развитие этой отрасли науки и техники столь стремительно, что, например, сегодняшниеяя микро-компьютеры не уступаеят по мощности мини-компьютерам пятилетней давности.

Принятая на сегодня градация компьютеров представлена в табл. 2.1. Отдельно стоит класс персональных компьютеров

· массовый ПК (Consumer PC),

· переносной (портативный) ПК (Mobile PC),

· деловой ПК (Office PC),

· рабочая станция (Workstation PC)

· развлекательный (мультимедийный) ПК (Entertainment PC).

Категория массовых ПК является базовой, в нее попадает большинство из имеющихся в настоящее время ПК. Для категории переносных ПК предъявляется обязательное требование присутствия средств компьютерной связи. В категории деловых ПК понижены требования к работе с графикой и совсем нет требований по воспроизводству звука. В категории рабочих станций усилены требования к устройствам памяти. В категории мультимедийных ПК особые требования предъявляются к качеству изображений и звука.

Классы современных компьютеров. Таблица 2.1

Класс компьютера Основное назначение Основные технические данные Цена, $ (ориентировочно)
Супер-компьютеры Сложные научные расчеты Интегральное быстродействие до десятков миллиардов операций в секунду; число параллельно работающих процессоров до 100 до 10000000
Большие компьютеры (мэйн-фреймы) Обработка больших объемов информации крупных предприятий, банков Мультипроцессорная архитектура; подключение до 200 рабочих мест до 250000
Супер мини-компьютеры Системы управления предприятиями; многопультовые вычислительные системы Мультипроцессорная архитектура; подключение до 200 терминалов; дисковые запоминающие устройства, наращиваемые до сотен Гбайт до 180000
Мини-компьютеры Системы управления предприятиями среднего размера; многопультовые вычислительные системы Однопроцессорная архитектура, разветвленная периферия до 100000
Рабочие станции Системы автоматизированного проектирования, системы автоматизации экспериментов Однопроцессорная архитектура, высокое быстродействие процессора; специализированная периферия до 50000
Продолжение таблицы 2.1
Класс компьютера Основное назначение Основные технические данные Цена, $ (ориентировочно)
Микро-компьютеры до 5000
Микро-компьютеры Индивидуальное обслуживание пользователя (см. ПК); работа в локальных автоматизированных системах управления Однопроцессорная архитектура, гибкость конфигурации - возможность подключения разнообразных внешних устройств до 510000

Отдельно стоит класс персональных компьютеров (ПК), включающий машины, предназначенные для обслуживания одного рабочего места. Особенно широкое распространение этот класс получил в 1990-х г.г. вследствие бурного развития глобальной компьютерной сети Internet. В настоящее время в отношении ПК действует международный сертификационный стандарт – спецификация PC99. В нем представлены принципы классификации ПК и минимальные требования к каждой из следующих категорий:

·массовый ПК (Consumer PC),

·переносной (портативный) ПК (Mobile PC),

·деловой ПК (Office PC),

·рабочая станция (Workstation PC)

·развлекательный (мультимедийный) ПК (Entertainment PC).

Категория массовых ПК является базовой, в нее попадает большинство из имеющихся в настоящее время ПК. Для категории переносных ПК предъявляется обязательное требование присутствия средств компьютерной связи. В категории деловых ПК понижены требования к работе с графикой и совсем нет требований по воспроизводству звука. В категории рабочих станций усилены требования к устройствам памяти. В категории развлекательных мультимедийных ПК особые требования предъявляются к качеству изображений и звука.

Стоимость портативного ПК в два-пять раз выше, чем у массового, имеющего такие же основные параметры (размер оперативной памяти, тип процессора, емкость жесткого диска и т. д.).

Отнесение машин к той или иной категории весьма условно как из-за размытости границ между ними, так и вследствие широкого внедрения в жизнь практики заказной сборки машин, когда номенклатура узлов ПК и даже конкретные модели подгоняются под требования заказчика.

На протяжении недавней истории ЭВМ, то есть примерно с середины 60-х годов, когда полупроводники уже полностью вытеснили электронные лампы из элементной базы вычислительных машин, в развитии этой области техники произошло несколько драматических поворотов. Все они явились следствием, с одной стороны, бурного развития технологии микропроцессоров, с другой - интенсивного прогресса программного обеспечения компьютеров. Тот и другой процессы развивались параллельно, подстегивая друг друга, в какой-то мере конкурируя. Новые технические возможности, появлявшиеся с созданием новых элементов и устройств, позволили разработать более совершенные (и функционально и по производительности) программы; это, в свою очередь, порождало потребность в новых, более совершенных компонентах и т. д.

В 60-е годы, в эпоху машин третьего поколения, то есть машин на базе отдельных полупроводниковых элементов и интегральных схем, небольшой плотности (типичные представители - компьютеры семейства IBM 360), пользователи пришли к осознанию необходимости изменения организации использования компьютера. До этого компьютер предоставлялся в распоряжение одного человека (это был либо оператор, выполняющий готовую программу, либо программист, занятый разработкой новой программы). Такой порядок не позволял использовать весь потенциал машины. Поэтому возникла технология так называемой пакетной обработки заданий, характерная тем, что пользователь был отделен от машины. Он должен был заранее подготовить свое задание (чаще всего - в виде колоды перфокарт с управляющими кодами и исходными данными), и передать его в руки операторов, которые формировали очередь заданий. Таким образом, машина получала для обработки сразу несколько заданий и не простаивала в ожидании каждого нового задания или реакции пользователя на свои сообщения. Но и этого оказалось недостаточно: по быстродействию центральный процессор намного опережал внешние устройства, такие как считыватели перфокарт и перфолент, алфавитно-цифровые печатающие устройства, и потому его мощность оказывалась не полностью использованной. Возникла идея организации многозадачного использования процессора. Её суть состояла в том, что процессор как бы одновременно выполнял несколько программ («как бы» - потому, что на самом деле процессор работал по-прежнему последовательно). Но когда, например, в рамках какой-то программы очередь доходила до обмена с внешним устройством, эта операция перепоручалась недорогому специализированному устройству, а центральный процессор переключался на продолжение другой программы и т. д. Таким образом, коэффициент использования аппаратной части вычислительной установки резко возрос. В рамках одного из направлений развития идеи многозадачности появились и так называемые многопультовыесистемы. Они представляли собою комплексы, состоявшие из центрального компьютера и группы видеотерминалов (числом до нескольких десятков). Человек-оператор, работавший за пультом такого терминала, ощущал себя полным распорядителем машины, поскольку компьютер реагировал на его действия (в том числе команды) с минимальной задержкой. В действительности же центральный компьютер квазикак бы -одновременно работал со многими программами, переключаясь с одной на другую в соответствии с определенной дисциплиной (например, уделяя каждому терминалу по нескольку миллисекунд в течение секунды).

В 1971 г. был создан первый микропроцессор, то есть функционально законченное устройство, способное выполнять обязанности центрального процессора (правда, в то время, - весьма маломощного). Это имело значение поворотного момента в истории вычислительной техники. (И не только вычислительной: в дальнейшем прогресс микроэлектроники привел к существенным переменам и в других областях - в станкостроении, автомобилестроении, технике связи и т. д.). Совершенствование технологии, опиравшееся на достижения фундаментальных наук, на успехи оптики, точного машиностроения, металлургии, керамики и других отраслей, дало возможность получить микропроцессоры со всё большим количеством элементов размещенных на поверхности полупроводникового кристалла со всё большей плотностью, а, значит, - всё более мощные компьютеры. Одновременно, (что очень важно) , заметно падала и их себестоимость. Забота о возможно более полном использовании вычислительных ресурсов теряла свою остроту, и даже актуальность.

В 1979 г. появился первый персональный компьютер. Мировой лидер в производстве средств вычислительной техники, корпорация IBM, отреагировала на его появление с некоторым запаздыванием, но в 1980 г. выступила на рынке со своим PC IBM, самой важной особенностью которого была так называемая открытая архитектура . Это означает, во-первых, возможность реализации принципа взаимозаменяемости, то есть использования для сборки ПК узлов от разных производителей (лишь бы они соответствовали определенным соглашениям), и во-вторых - возможность доукомплектования ПК, наращивания его мощности уже в ходе его эксплуатации. Это смелое и дальновидное техническое решение дало мощный толчок всей индустрии ПК. Десятки и сотни фирм включились в разработку и производство отдельных блоков и целых ПК, создав всплеск большой спроса на элементы, новые материалы, новые идеи. Все последующие годы отмечены фантастически быстрым совершенствованием микропроцессоров (каждые пять лет плотность размещения элементов на полупроводниковом кристалле возрастала в десять раз!), запоминающих устройств (оперативных и накопительных), средств отображения и фиксации данных. И, как уже указывалось, очень существенно то, что одновременно снижались себестоимость и цены на ПК.

В конечном счете, последние два десятилетия ознаменованы широчайшим распространением ПК во всех сферах человеческой деятельности, (включая быт, досуг и домашнее хозяйство). Заметны и социальные последствия этого феномена (это -важный отдельный вопрос). . Стоит отметить, что ПК стали преобладать и как аппаратная база в системах управления, вытесняя оттуда большие компьютеры., чЭто привело к ряду негативных последствий (, в частности, к неприемлемому снижению уровня централизации и частичной потере управляемости, что, правда частично компенсировалось развитием новых сетевых технологий, например – сетей типа «тонкий клиент»).

Как и ранее, технологические достижения принесли не только удовлетворение, но и новые проблемы. Усилия по их разрешению приводят к новым интересным результатам как в аппаратной сфере, так и в создании новых программных средств и систем. Проиллюстрируем это положение несколькими примерами.

Увеличение емкости накопителей и снижение стоимости хранения данных дало толчок расширению применения баз данных в составе систем управления разного назначения, возросло осознание ценности баз данных. Отсюда возникла потребность предоставить доступ к информационным ресурсам многим пользователям (тем, кому это необходимо по роду службы). .Ответом на нее стало создание локальных вычислительных сетей. Такие сети позволяют решить и задачу повышения загрузки дорогостоящих аппаратных средств (, например, лазерных или светодиодных принтеров, плоттеров). Появление сетей, в свою очередь, обострило потребность в еще более мощных накопителях и процессорах и т. д.

Увеличение быстродействия процессоров и емкости ОЗУ создало предпосылки для перехода к графическому интерфейсу. Для IBM-подобных компьютеров это была сначала графическая оболочка Windows, а затем - полноценные операционные системы (Windows -95, -98, -2000, -XP). Но одновременно все более ощутимым стало и осознание неполного доиспользованностиния вычислительной мощности аппаратной части компьютера. Возродилась, правда уже нана новой основе, идея многозадачности. Она воплощена в тех же новых операционных системах. Так что, работая, например, под Windows 982000, можно одновременно выполнять обработку какого–то массива данных, распечатывать результаты предыдущей программы и принимать электронную почту.

Компьютеризация всех сфер жизни вызвала повышенное внимание масс рядовых пользователей к такой важной теме как воздействия компьютера на состояние здоровья. Этому способствуют и многочисленные публикации последнего времени в отечественной и зарубежной прессе. Так, по данным Министерства Труда США, “повторяющиеся травмирующие воздействия при работе с компьютером"” обходятся корпоративной Америке в 100 млрд. $ ежегодно. При этом пострадавшие иногда расплачиваются жестокими болями в течение всей жизни. Актуальность проблематики очевидна. Вместе с тем, уровень отечественных медицинских публикаций на эту тему либо сильно завышен и не доступен рядовому пользователю (статьи в изданиях для врачей) либо занижен, так как не предусматривает комплексного анализа ситуации. Обычно авторы популярных изданий сосредотачивают внимание на чем - то одном, и чаще всего это – тема влияния излучений от электронно-лучевого монитора.

Да, действительно, вокруг такого монитора присутствуют переменные электрическое и магнитное поля, имеется рентгеновское излучение. Однако технические характеристики мониторов и других частей компьютера в настоящее время жестко контролируются специальными международными стандартами, что исключает вредные воздействия при правильной эксплуатации. Любой уважающий себя производитель или поставщик компьютерного оборудования стремится получить на него сертификат по шведскому международному стандарту ТСО. Покупателю остается удостовериться в наличии такого сертификата и далее он может быть уверен в высоком качестве монитора. Кроме того, проблема влияния излучений полностью отсутствует у жидкокристаллических мониторов, доля которых на рынке превысила в настоящее время 50%. Таким образом, пользователь не должен испытывать своего рода фобии при постоянной работе с компьютером, необходимио лишь уделить должное внимание правильной организации своего рабочего места и соблюдению режима работы. Все необходимые для этого рекомендации содержатся в официальном документе Министерства Здравоохранения РФ “Санитарные правила и нормы. Сан ПиН 2.2.2.542-96.”

Обилие ПК в конторах и на предприятиях иногда создает ложное впечатление об уходе больших и средних машин из сферы управления, из систем обработки деловой информации. Однако это не так. Например, в крупных банках ПК используются в основном как устройства оформления первичных операций и средства общения с клиентами, то есть в качестве терминалов, а все проводки, проверки кредитоспособности и т. п. операции выполняются на больших компьютерах. И на промышленных предприятиях при построении автоматизированных информационных систем также может оказаться более рентабельным применение многопультовой системы на базе большого или среднего компьютера. Так, например, стоимость одного рабочего места в многопультовой системе на базе компьютера типа ЕС 1066 стоказываетсяановится ниже, чем при использовании ПК, начиная с числа терминалов, равного 200.

Подводя итоги, можно сказать, что основные наблюдаемые ныне тенденции развития компьютерной техники выражаются в следующем:

· Продолжается рост вычислительной мощности микропроцессоров. При дальнейшем увеличении плотности размещения элементов тактовая частота процессоров перевалила барьер 32 Ггц. Наиболее популярны модели Intel Pentium-4 2600-3200 (высокая скорость без мелких, но часто очень мешающих про­блем), AMD Athlon XP 2600-2800 (отличная произво­дительность по приемлемой цене).

· Повышение мощности микропроцессоров позволяет совмещать в одном элементе («на одном кристалле») все большее число устройств. Это, в свою очередь, дает возможность реализовать на одной печатной плате большее число функций и за счет этого сокращать число отдельных блоков компьютера;

· Расширяется набор функций, реализуемых в одном ПК, он становится все более «разносторонним» аппаратом. Особенно наглядно это проявляется в мультимедийном компьютере, который представляет собой, по существу, функциональный комбайн: помимо своих «прямых обязанностей» - обработки алфавитно–цифровой информации он способен работать со звуком (воспроизведение и запись; редактирование, включая создание специальных эффектов и др.); воспроизводить видеосигнал (прием телепередач; запись кадров и их обработка; воспроизведение аналоговых и цифровых видеозаписей, компьютерных анимаций и др.); эффективно работать в компьютерных сетях. Многообразие возможностей требует, в свою очередь, расширения номенклатуры компонентов и существенного повышения мощности базовых блоков.

На протяжении недавней истории ЭВМ, то есть примерно с середины 60-х годов, когда полупроводники уже полностью вытеснили электронные лампы из элементной базы вычислительных машин, в развитии этой области техники произошло несколько драматических поворотов. Все они явились следствием, с одной стороны, бурного развития технологии микропроцессоров, с другой - интенсивного прогресса программного обеспечения компьютеров. Тот и другой процессы развивались параллельно, подстегивая друг друга, в какой-то мере конкурируя. Новые технические возможности, появлявшиеся с созданием новых элементов и устройств, позволили разработать более совершенные (и функционально и по производительности) программы; это, в свою очередь, порождало потребность в новых, более совершенных компонентах и т. д.

В 60-е годы, в эпоху машин третьего поколения, то есть машин на базе отдельных полупроводниковых элементов и интегральных схем, небольшой плотности (типичные представители - компьютеры семейства IBM 360), пользователи пришли к осознанию необходимости изменения организации использования компьютера. До этого компьютер предоставлялся в распоряжение одного человека (это был либо оператор, выполняющий готовую программу, либо программист, занятый разработкой новой программы). Такой порядок не позволял использовать весь потенциал машины. Поэтому возникла технология так называемой пакетной обработки заданий, характерная тем, что пользователь был отделен от машины. Он должен был заранее подготовить свое задание (чаще всего - в виде колоды перфокарт с управляющими кодами и исходными данными), и передать его в руки операторов, которые формировали очередь заданий. Таким образом, машина получала для обработки сразу несколько заданий и не простаивала в ожидании каждого нового задания или реакции пользователя на свои сообщения. Но и этого оказалось недостаточно: по быстродействию центральный процессор намного опережал внешние устройства, такие как считыватели перфокарт и перфолент, алфавитно-цифровые печатающие устройства, и потому его мощность оказывалась не полностью использованной. Возникла идея организации многозадачного использования процессора. Её суть состояла в том, что процессор как бы одновременно выполнял несколько программ («как бы» - потому, что на самом деле процессор работал по-прежнему последовательно). Но когда, например, в рамках какой-то программы очередь доходила до обмена с внешним устройством, эта операция перепоручалась недорогому специализированному устройству, а центральный процессор переключался на продолжение другой программы и т. д. Таким образом, коэффициент использования аппаратной части вычислительной установки резко возрос. В рамках одного из направлений развития идеи многозадачности появились и так называемые многопультовые системы. Они представляли собою комплексы, состоявшие из центрального компьютера и группы видеотерминалов (числом до нескольких десятков). Человек-оператор, работавший за пультом такого терминала, ощущал себя полным распорядителем машины, поскольку компьютер реагировал на его действия (в том числе команды) с минимальной задержкой. В действительности же центральный компьютер как бы одновременно работал со многими программами, переключаясь с одной на другую в соответствии с определенной дисциплиной (например, уделяя каждому терминалу по нескольку миллисекунд в течение секунды).

В 1971 г. был создан первый микропроцессор, то есть функционально законченное устройство, способное выполнять обязанности центрального процессора (правда, в то время, - весьма маломощного). Это имело значение поворотного момента в истории вычислительной техники. И не только вычислительной: в дальнейшем прогресс микроэлектроники привел к существенным переменам и в других областях - в станкостроении, автомобилестроении, технике связи и т. д. Совершенствование технологии, опиравшееся на достижения фундаментальных наук, на успехи оптики, точного машиностроения, металлургии, керамики и других отраслей, дало возможность получить микропроцессоры со всё большим количеством элементов размещенных на поверхности полупроводникового кристалла со всё большей плотностью, а, значит, - всё более мощные компьютеры. Одновременно, что очень важно, заметно падала и их себестоимость. Забота о возможно более полном использовании вычислительных ресурсов теряла свою остроту, и даже актуальность.

В 1979 г. появился первый персональный компьютер. Мировой лидер в производстве средств вычислительной техники, корпорация IBM, отреагировала на его появление с некоторым запаздыванием, но в 1980 г. выступила на рынке со своим PC IBM, самой важной особенностью которого была так называемая открытая архитектура . Это означает, во-первых, возможность реализации принципа взаимозаменяемости, то есть использования для сборки ПК узлов от разных производителей (лишь бы они соответствовали определенным соглашениям), и во-вторых - возможность доукомплектования ПК, наращивания его мощности уже в ходе его эксплуатации. Это смелое и дальновидное техническое решение дало мощный толчок всей индустрии ПК. Десятки и сотни фирм включились в разработку и производство отдельных блоков и целых ПК, создав большой спрос на элементы, новые материалы, новые идеи. Все последующие годы отмечены фантастически быстрым совершенствованием микропроцессоров (каждые пять лет плотность размещения элементов на полупроводниковом кристалле возрастала в десять раз!), запоминающих устройств (оперативных и накопительных), средств отображения и фиксации данных. И, как уже указывалось, очень существенно то, что одновременно снижались себестоимость и цены на ПК.

В конечном счете, последние два десятилетия ознаменованы широчайшим распространением ПК во всех сферах человеческой деятельности, включая быт, досуг и домашнее хозяйство. Заметны и социальные последствия этого феномена.Стоит отметить, что ПК стали преобладать и как аппаратная база систем управления, вытесняя большие компьютеры, что привело к ряду негативных последствий, в частности, к неприемлемому снижению уровня централизации и частичной потере управляемости, что частично компенсировалось развитием сетевых технологий.

Как и ранее, технологические достижения принесли не только удовлетворение, но и новые проблемы. Усилия по их разрешению приводят к новым интересным результатам как в аппаратной сфере, так и в создании новых программных средств и систем. Проиллюстрируем это положение несколькими примерами.

Увеличение емкости накопителей и снижение стоимости хранения данных дало толчок расширению применения баз данных в составе систем управления разного назначения, возросло осознание ценности баз данных. Отсюда возникла потребность предоставить доступ к информационным ресурсам многим пользователям.Ответом на нее стало создание локальных вычислительных сетей. Такие сети позволяют решить и задачу повышения загрузки дорогостоящих аппаратных средств, например, лазерных или светодиодных принтеров, плоттеров. Появление сетей, в свою очередь, обострило потребность в еще более мощных накопителях и процессорах и т. д.

Увеличение быстродействия процессоров и емкости ОЗУ создало предпосылки для перехода к графическому интерфейсу. Для IBM-подобных компьютеров это была сначала графическая оболочка Windows, а затем - полноценные операционные системы (Windows -95, -98, -2000, -XP). Но одновременно все более ощутимым стало и осознание неполного использования вычислительной мощности аппаратной части компьютера. Возродиласьна новой основе идея многозадачности. Она воплощена в новых операционных системах. Так что работая, например, под Windows 98, можно одновременно выполнять обработку какого–то массива данных, распечатывать результаты предыдущей программы и принимать электронную почту.

Компьютеризация всех сфер жизни вызвала повышенное внимание масс рядовых пользователей к такой важной теме как воздействия компьютера на состояние здоровья. Этому способствуют и многочисленные публикации последнего времени в отечественной и зарубежной прессе. Так, по данным Министерства Труда США, “повторяющиеся травмирующие воздействия при работе с компьютером” обходятся корпоративной Америке в 100 млрд. $ ежегодно. При этом пострадавшие иногда расплачиваются жестокими болями в течение всей жизни. Актуальность проблематики очевидна. Вместе с тем, уровень отечественных медицинских публикаций на эту тему либо сильно завышен и не доступен рядовому пользователю (статьи в изданиях для врачей) либо занижен, так как не предусматривает комплексного анализа ситуации. Обычно авторы популярных изданий сосредотачивают внимание на чем - то одном, и чаще всего это – тема влияния излучений от монитора.

Да, действительно, вокруг монитора присутствуют переменные электрическое и магнитное поля, имеется рентгеновское излучение. Однако технические характеристики мониторов и других частей компьютера в настоящее время жестко контролируются специальными международными стандартами, что исключает вредные воздействия при правильной эксплуатации. Любой уважающий себя производитель или поставщик компьютерного оборудования стремится получить на него сертификат по шведскому стандарту ТСО. Покупателю остается удостовериться в наличии такого сертификата и далее он может быть уверен в высоком качестве монитора. Таким образом, пользователь не должен испытывать своего рода фобии при постоянной работе с компьютером, необходимо лишь уделить должное внимание правильной организации своего рабочего места и соблюдению режима работы. Все необходимые для этого рекомендации содержатся в официальном документе Министерства Здравоохранения РФ “Санитарные правила и нормы. Сан ПиН 2.2.2.542-96.”

Обилие ПК в конторах и на предприятиях иногда создает ложное впечатление об уходе больших и средних машин из сферы управления, из систем обработки деловой информации. Однако это не так. Например, в крупных банках ПК используются в основном как устройства оформления первичных операций и средства общения с клиентами, то есть в качестве терминалов, а все проводки, проверки кредитоспособности и т. п. операции выполняются на больших компьютерах. И на промышленных предприятиях при построении автоматизированных информационных систем также может оказаться более рентабельным применение многопультовой системы на базе большого или среднего компьютера. Так, например, стоимость одного рабочего места в многопультовой системе на базе компьютера типа ЕС 1066 становится ниже, чем при использовании ПК, начиная с числа терминалов, равного 200.

Подводя итоги, можно сказать, что основные наблюдаемые ныне тенденции развития компьютерной техники выражаются в следующем:

    Продолжается рост вычислительной мощности микропроцессоров. При дальнейшем увеличении плотности размещения элементов тактовая частота процессоров перевалила барьер 2 Ггц. Наиболее популярны модели Intel Pentium-4 (высокая скорость без мелких, но часто очень мешающих про­блем), AMD Athlon XP (отличная произво­дительность по приемлемой цене).

    Повышение мощности микропроцессоров позволяет совмещать в одном элементе («на одном кристалле») все большее число устройств. Это, в свою очередь, дает возможность реализовать на одной печатной плате большее число функций и за счет этого сокращать число отдельных блоков компьютера;

    Расширяется набор функций, реализуемых в одном ПК, он становится все более «разносторонним» аппаратом. Особенно наглядно это проявляется в мультимедийном компьютере, который представляет собой, по существу, функциональный комбайн: помимо своих «прямых обязанностей» - обработки алфавитно–цифровой информации он способен работать со звуком (воспроизведение и запись; редактирование, включая создание специальных эффектов и др.); воспроизводить видеосигнал (прием телепередач; запись кадров и их обработка; воспроизведение аналоговых и цифровых видеозаписей, компьютерных анимаций и др.); эффективно работать в компьютерных сетях. Многообразие возможностей требует, в свою очередь, расширения номенклатуры компонентов и существенного повышения мощности базовых блоков.

Сети компьютеров

В настоящее время особо важное значение приобрела конфигурация вычислительной системы, построенная на использовании многих компьютеров, объединенных в сеть. При этом обеспечивается единое информационное пространство сразу для множества пользователей вычислительной системы, что особенно наглядно проявилось на примере всемирной компьютерной сети Internet.

Компьютерной сетью называется совокупность компьютеров, взаимосвязанных через каналы передачи данных, обеспечивающая пользователей средствами обмена информацией и коллективного использования ресурсов сети: аппаратных, программных и информационных.

Объединение компьютеров в сеть позволяет совместно использовать дорогостоящее оборудование - диски большой емкости, принтеры, модемы, оперативную память, иметь общие программные средства и данные. Глобальные сети предоставляют возможность использовать аппаратные ресурсы удаленных компьютеров. Глобальные сети, охватывая миллионы людей, полностью изменили процесс распространения и восприятия информации, сделали обмен информацией через электронную почту самой распространенной услугой сети, а саму информацию - основным ресурсом человека.

Основным назначением сети является обеспечение простого, удобного и надежного доступа пользователя к распределенным общесетевым ресурсам и организация их коллективного использования при надежной защите от несанкционированного доступа, а также обеспечение удобных и надежных средств передачи данных между пользователями сети. С помощью сетей эти проблемы решаются независимо от территориального расположения пользователей.

В эпоху всеобщей информатизации большие объемы информации хранятся, обрабатываются и передаются в локальных и глобальных компьютерных сетях. В локальных сетях создаются общие базы данных для работы пользователей. В глобальных сетях осуществляется формирование единого научного, экономического, социального и культурного информационного пространства.

Помимо сфер научной, деловой, образовательной, общественной и культурной жизни глобальная сеть охватила и сделала доступным для миллионов людей новый вид отдыха и развлечений. Сеть превратилась в инструмент ежедневной работы и организации досуга людей самого разного круга.

Компьютерные сети можно классифицировать по ряду признаков, например, по степени территориальной распределенности. При этом различают глобальные, региональные и локальные сети.

Глобальные сети объединяют пользователей, расположенных по всему миру, используют волоконно-оптические и спутниковые каналы связи, позволяющие соединять узлы сети связи и компьютеры, находящиеся на расстоянии до 10–15 тыс. км друг от друга.

Региональные сети объединяют пользователей города, области, небольших стран. В качестве каналов связи чаще всего используются волоконно-оптические и телефонные линии. Расстояния между узлами сети составляют 10–1000 км.

Локальные сети связывают абонентов одного или близлежащих зданий одного предприятия, учреждения. Локальные сети получили очень широкое распространение, так как 80–90% информации циркулирует вблизи мест ее появления и только 20–10% связано с внешними взаимодействиями. Локальные сети могут иметь любую структуру, но чаще всего компьютеры в локальной сети связаны единым высокоскоростным каналом передачи данных. Единый для всех компьютеров высокоскоростной канал передачи данных - главная отличительная особенность локальных сетей. В качестве канала передачи данных используется витая пара, коаксиальный кабель либо оптический кабель. В оптическом канале световод сделан из кварцевого стекла толщиной в волос, это - наиболее высокоскоростной, надежный, но и дорогостоящий кабель. Расстояния между компьютерами в локальной сети - до 10 км.

Корпоративные сети являются тем примером, который не укладывается в систему классификации сетей по признаку их территориальной распределенности. Например, сеть банка или авиакомпании может связывать компьютеры как в соседних помещениях, так и расположенные на разных континентах. Корпоративная сеть обычно имеет свою особую систему кодирования и защиты информации, что исключает в ней свободный доступ, характерный для глобальных сетей.

Каналы связи в локальных и корпоративных сетях являются собственностью организации, и это серьезно упрощает их эксплуатацию.

Функциональные возможности сети определяются теми услугами, которые она предоставляет пользователю. Для реализации каждой из услуг сети и доступа пользователя к этой услуге разрабатывается специальное программное обеспечение.

Для обеспечения связи между этими сетями используются средства межсетевого взаимодействия, называемые мостами (Bridge) и маршрутизаторами (Router). В качестве моста и маршрутизатора могут использоваться компьютеры, в которых установлено по два или более сетевых адаптера. Каждый из адаптеров обеспечивает связь с одной из связываемых сетей.

Мост или маршрутизатор получает пакеты, посылаемые компьютером одной сети компьютеру другой сети, переадресует их и отправляет по указанному адресу. Мосты, как правило, используются для связи сетей с одинаковыми коммуникационными системами, например для связи двух сетей Ethernet или двух сетей Arcnet. Маршрутизаторы связывают сети с разными коммуникационными системами, так как имеют средства преобразования пакетов одного формата в другой. Существуют мосты-маршрутизаторы (Brouter), объединяющие функции обоих средств.

Для обеспечения связи сетей с различными компьютерными системами предназначены шлюзы (Gateway). Например, в общей структуре корпоративной сети через шлюз локальная сеть может быть связана с мощным внешним компьютером.

Конфигурация вычислительной системы

На выбор конфигурации вычислительной системы решающее влияние оказывает технологический процесс ее работы в конкретных производственных условиях. Можно выделить следующие стандартные этапы работы:

    Зарождение данных , т.е. формирование первичных сообщений, которые фиксируют результаты хозяйственных операций, свойства объектов и субъектов управления, параметры производственных процессов, содержание нормативных и юридических актов и т.д.

    Накопление и систематизация данных , т.е. организация такого размещения данных, которое обеспечивало бы быстрый поиск и отбор нужных сведений, методическое обновление данных, защиту их от искажений, утраты, потери связности и т.п.

    Обработка данных - процессы, в результате которых на основе ранее накопленных данных формируются новые виды данных: обобщающие, аналитические, рекомендательные, прогнозные... Производные данные тоже могут быть подвергнуты дальнейшей обработке и принести сведения более глубокой обобщенности и т.д.

    Отображение данных - представление данных в форме, пригодной для восприятия человеком. Прежде всего - это вывод на печать, т.е. изготовление читаемых человеком документов. Также широко используются такие виды преобразования, как построение графических иллюстративных материалов (графики, диаграммы, пиктограммы, видеограммы), формирование звуковых и видео - сигналов.

Сообщения, формируемые на этапе 1, могут иметь разный вид: либо это обычный бумажный документ, либо машиночитаемое сообщение, либо то и другое одновременно. Что именно - определяет разработчик конфигурации вычислительной системы в зависимости от требуемой степени автоматизации процесса; от управленческой функции, в рамках которой сообщение создано; от бюджета, выделенного на создание системы и т.д. Сообщения, имеющие массовый характер, обязательно переводятся в машиночитаемый вид, так что создание такого сообщения предпочтительно заканчивать на машинном носителе. Специальная аппаратура, реализующая эти операции, носит собирательное название «средства сбора данных» или «средства регистрации первичной информации». Она включает измерители различных типов (электронные весы, счетчики, расходомеры, хронометры), считыватели штрих-кодов, машины для счета банкнот, считыватели магнитных карт и т.п.

Потребности этапов 2 и 3 обычно удовлетворяются базовыми средствами вычислительной техники, в основном - компьютерами. В то же время, информация по некоторым видам управленческих и коммерческих функций вполне может накапливаться и обрабатываться и более дешевыми средствами оргтехники (приборы для использования «электронных» денег, электронные записные книжки, калькуляторы и т.п.).

Средства, обеспечивающие восприятие информации человеком, т.е. средства отображения данных (этап 4), также тяготеют к цифровой вычислительной технике. Это – матричные, струйные, лазерные, светодиодные принтеры, модемы и факс-модемы (используемые также в Интернет – телефонии), специальные звуковые и видео - карты различной мощности, устройства оцифровки фото и видео – изображений, проекторы компьютерных изображений.