Геоинформационные технологии, основные характеристики современных гис. Геоинформационные технологии Военные корни гражданской ГИС

Надо сказать, что в Россию преимущественно попадают такие образцы ГИС, которые ориентированы либо на работу в основном с мелкомасштабными картами (например, М1:1000000 - М1:50000), либо на бизнес-анализ территориально распределённой информации, причём для отображения карты в таких системах не ставится задача удовлетворения всем необходимым стандартам на представление картографической информации.

На переднем каре геоинформатики - в области работы с весьма насыщенными и громоздкими крупномасштабными (М1:2000 или М1:500) картами городов подобные западные ГИС не очень хорошо приспособлены. Другие же ГИС, - которые призваны моделировать сложные динамические процессы, протекающие на территориях городов, или физические процессы в инженерных коммуникациях, стоят многие тысячи долларов на каждое рабочее место, а потому перспективы их продаж в России в период кризиса очень плохие. Их практически и не завозят в нашу страну. Продаются в основном не самые развитые продукты, которые трудно применить на городском уровне в той мере, в какой это необходимо большинству городских служб.

Приведём некоторые ГИС, которые могут представлять интерес.

Наиболее хорошо себя зарекомендовали для работы с мелкомасштабными "природными" картами (геология, сельское хозяйство, навигация, экология и т.п.) такие ГИС, как ArcInfo и ArcView GIS. Обе системы разработаны американской компанией ESRI (www.esri.com., www.dataplus.ru.) и весьма распространены в мире.

Из относительно простых западных ГИС, которые начинали свою родословную с анализа территорий в объёме, необходимом для бизнеса и относительно простых применений, можно назвать систему MapInfo, которая также распространена в мире весьма широко. Эта система очень быстро прогрессирует и сегодня может составить конкуренцию самым развитым ГИС.

Корпорацией Intergraph (www.intergraph.com) поставляется ГИС MGE, базирующаяся на основе AutoCAD-подобной системы MicroStation, выпускаемой в свою очередь компанией Bently. Система MGE представляет собой целое семейство различных программных продуктов, помогающих решать набольшее множество задач, существующих в области геоинформатики.

Все указанные продукты имеют и Internet-ГИС-серверы, позволяющие публиковать цифровые карты в Internet. Правда, приходится говорить только о вьюерах, поскольку обеспечить сегодня редактирование топологических карт со стороны удалённого клиента Internet нельзя по причине недостаточной развитости как ГИС-, так и Internet-технологий.

Буквально недавно вышла на рынок ГИС и Microsoft, подтвердив, тем самым, что ГИС станет в ближайшем будущем такой системой, которую должен иметь на своём компьютере всякий мало-мальски уважающий себя пользователь, как он имеет сегодня у себя Excel Или Word. Microsoft выпустила продукт MapPoint (Microsoft MapPoint 2000 Business Mapping Software), который вошел в состав Office 2000. Эта компонента офисного продукта будет ориентирована в основном на бизнес-планирование и анализ.

Отечественные гис

Повторением концепции ArcInfo, но сильно уступающей последней по функциональной полноте является отечественная система GeoDraw, разработанная в ЦГИ ИГРАН (г.Москва). Возможности её ограничены сегодня в основном мелкомасштабными картами. С нашей точки зрения значительно "сильнее" здесь выглядит "старейшина" отечественной геоинформатики - ГИС Sinteks ABRIS. В последней хорошо представлены функции по анализу пространственной информации.

В геологии сильны позиции ГИС ПАРК (Ланэко, г.Москва), в которой также реализованы уникальные методы моделирования соответствующих процессов.

Наиболее "продвинутыми" в области представления и дежурства крупномасштабных насыщенных карт городов и генпланов крупных предприятий можно считать две отечественные системы: GeoCosm (ГЕОИД, г.Геленджик) и "ИнГео" (ЦСИ "Интегро", г.Уфа, www.integro.ru). Эти системы - одни из самых молодых и потому разрабатывались сразу с использованием самых современных технологий. А систему "ИнГео" разрабатывали даже не столько геодезисты, сколько специалисты, относящие себя к профессионалам в области имитационного моделирования и кадастровых систем.

В целом в России едва ли не в каждой организации создают свою ГИС. Однако, как мы хотели показать в данной статье, этот процесс - весьма непростой, и вероятность его завершения неудачно несравненно более высока, чем вероятность безпроблемной реализации, не говоря уже о возможности выхода коммерческого продукта, допускающим отчуждение

Геоинформационные системы и технологии

Геоинформационная система (ГИС) - это многофункциональная информационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при решении расчетных задач, подготовке и принятии решений. Основное назначение ГИС заключается в формировании знаний о Земле, отдельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью достижения наибольшей эффективности их работы.

Геоинформационные технологии (ГИТ) - это информационные технологии обработки географически организованной информации.
Основной особенностью ГИС, определяющей ее преимущества в сравнении с другими АИС, является наличие геоинформационной основы, т.е. цифровых карт (ЦК), дающих необходимую информацию о земной поверхности. При этом ЦК должны обеспечивать:
точную привязку, систематизацию, отбор и интеграцию всей поступаю¬щей и хранимой информации (единое адресное пространство);
комплексность и наглядность информации для принятия решений;
возможность динамического моделирования процессов и явлений;
возможность автоматизированного решения задач, связанных с анализом особенностей территории;
возможность оперативного анализа ситуации в экстренных случаях.
История развития ГИТ восходит к работам Р. Томлисона по созданию Канадской ГИС (CGIS), проводившимся в 1963-1971 гг.
В широком смысле ГИТ - это наборы данных и аналитические средства для работы с координатно привязанной информацией. ГИТ - это не информационные технологии в географии, а информационные технологии обработки географически организованной информации.
Существо ГИТ проявляется в ее способности связывать с картографическими (графическими) объектами некоторую описательную (атрибутивную) информацию (в первую очередь алфавитно-цифровую и иную графическую, звуковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (а обычно выделяют точечные, линейные и площадные объекты) ставится в соответствие строка таблицы - запись в БД. Использование такой связи, собственно, и открывает столь богатые функциональные возможности перед ГИТ. Эти возможности, естественно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопросы "что это?" указанием объекта на кар¬те и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Исторически первое и наиболее универсальное использование ГИТ - это информационно-поисковые, справочные системы.
Таким образом, ГИТ можно рассматривать как некое расширение технологии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относится к объектам, для которых важную роль играет их пространственное положение, форма и взаиморасположение, а следовательно, ГИТ во многих приложениях значительно расширяют возможности обычных СУБД, так как ГИТ более удобны и наглядны в использовании и предоставляют ДЛ свой "картографический интерфейс" для организации запроса к базе данных вместе со средствами генерации "графического" отчета. И, наконец, ГИТ добавляет обычным СУБД совершенно новую функциональность - использование пространственных взаимоотношений между объектами.
ГИТ позволяет выполнять над множествами картографических объектов операции, подобные обычным реляционным (JOIN, UNION, INTERSECTION). Операции этой группы называются оверлейными, так как используют в разных вариантах пространственное наложение одного множества объектов на другое. Фактически оверлейные операции обладают большим аналитическим потенциалом, и для многих сфер применения ГИТ являются основными, обеспечивая решение прикладных задач (землепользования, комплексной оценки территорий и другие).
ГИТ предлагает совершенно новый путь развития картографии. Прежде всего, преодолеваются основные недостатки обычных карт: статичность данных и ограниченность емкости "бумаги" как носителя информации. В последние десятилетия не только сложные специализированные карты типа экологических, но и ряд обычных бумажных карт из-за перегруженности информацией становятся "нечитаемыми". ГИТ решает эту проблему путем управления визуализацией информации. Появляется возможность выводить на экран или на твердую копию только те объекты или их множества, которые необходимы пользователю в данный момент. То есть фактически осуществляется переход от сложных комплексных карт к серии взаимоувязанных частных карт. При этом обеспечивается лучшая структурированность информации, что позволяет ее эффективно использовать (манипулирование, анализ данных и т.п.). Очевидно, что наблюдается тенденция возрастания роли ГИТ в процессе активизации информационных ресурсов, т.к. огромные массивы картографической информации эффективно переводимы в активную машиночитаемую форму только с помощью ГИТ. Кроме того, в ГИТ карта становится действительно динамическим объектом.


Последнее обусловлено следующими новыми возможностями ГИТ:
изменяемостью масштаба;
преобразованием картографических проекций:
варьированием объектным составом карты;
"опросом" через карту в режиме реального времени многочисленных БД, содержащих изменяемую информацию;
варьированием символогией, то есть способом отображения объектов (цвет, тип линии и т.п.), в том числе определение символогии через значения атрибутивных признаков объектов, что позволяет синхронизировать визуализацию с изменениями в БД.
В настоящее время широко распространено понимание того, что ГИТ - это не класс или тип программных систем, а базовая технология {umbrella technology) для многих компьютерных приложений (методов и программ), работающих с пространственной информацией.
Поскольку ЦКМ являются наборами данных сложной структуры, то их целесообразно представлять в различных форматах. Под форматом ЦКМ понимается специально введенная система классификации и кодирования данных о местности. От принятого формата ЦКМ во многом зависит оперативность решения функциональных задач (ФЗ) в системах управления военного назначения. Так, например, в случае представления рельефа местности горизонталями вычисление профиля местности занимает в тысячи раз больше времени, чем при представлении рельефа в форме матрицы высот.
Одним из важнейших и наиболее часто встречающихся типов информационной потребности в геоинформации является построение изображения участка карты на экране АРМ {визуализация карты). Но средства отображения ЦКМ на экране АРМ, наряду с приведенными выше требованиями к средствам доступа, должны отвечать еще ряду специфических требований, обусловленных необходимостью восприятия информации человеком. По существу - это следующие эргономические требования, которые целесообразно рассматривать в комплексе с другими:
по "читабельности" обстановки (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком информации оперативной обстановки на фоне карты);
по "читабельности" карты, (т.е. обладать достаточно высокими характеристиками скорости и достоверности восприятия человеком собственно картографической информации);
по "комфортности" восприятия, (т.е. форма отображения данных не должна вызывать чрезмерных напряжения человека при восприятии ин¬формации и раздражения его органов чувств в целях обеспечения требуемой продолжительности сохранения его работоспособности).
ФЗ требует для своего решения различные данные о местности. По мнению авторов, все множество этих задач по характеру использования ЦКМ можно разделить на четыре основных класса:
задачи, требующие выдачу изображения карты на устройства ввода- вывода средств автоматизации и использующие ее в качестве фона для вывода оперативной обстановки (ОКФ);
задачи, использующие информацию о характере и профилях местности (ОХПМ);
задачи, использующие информацию о дорожной сети (РДС);
задачи, использующие информацию о местоположении объекта в пределах территории государства, зоны ответственности или нейтральной территории (ОМП).
Задачами ОКФ являются все задачи, отображающие оперативную обстановку на местности в процессе диалога с пользователем. Данные задачи могут отображать "поверх карты" информацию о группировках своих войск и войск противника, зонах радиоактивного, химического, биологического заражения, сплошных разрушений, пожаров, затоплений, о направлениях и рубежах действий, районах сосредоточения и др. Общая для задач ОКФ особенность использования ЦКМ заключается в необходимости быстрого вывода изображения карты на экран АРМ в различных масштабах.
К задачам ОХПМ относятся задачи выбора места развертывания радиорелейных станций (РРС), тропосферных станций (ТРС), радиолокационных станций (PJIC), средств радиотехнической разведки, радиоэлектронной борьбы и т.д. Задачи оценки защитных свойств местности в районах развертывания пунк¬тов управления (ПУ) и узлов связи (УС), планирования огневого воздействия и т.п. также относятся к классу ОХПМ. Особенностью задач ОХПМ является необходимость определения с высокой скоростью характеристик местности в окрестностях точки с произвольными координатами.
К задачам РДС относятся, в частности, задачи определения маршрута и планирования порядка перемещения воинских формирований, оптимального пла-нирования перевозок средств снабжения или почты и некоторые другие. Данные задачи используют данные ЦКМ о дорожной сети, которые должны быть представлены в специальной форме - в виде графа, в котором все пересекающиеся дороги имеют общую вершину в перекрестках.
Задачи ОМП используют в ЦКМ данные о государственных (сухопутных и морских) и иных границах, заданные в специальной форме - в виде замкнутых контуров.
По типу информационных потребностей многие ФЗ можно отнести сразу к нескольким различным классам. В частности, задача определения оптимального района развертывания РРС может обладать свойствами классов ОХПМ и РДС, а в процессе решения для организации диалога с пользователем - свойствами класса ОКФ.

В связи с глубоким взаимопроникновением ГИС и других информационных технологий целесообразно рассмотреть взаимосвязь ГИТ с другими техноло­гиями.

Прежде всего, это графические технологии систем автоматизированного проектирования (САПР), векторных графических редакторов, и с другой сторо­ны - технологии реляционных СУБД. Большинство реализаций современных ГИТ в своей основе и представляет собой интеграцию этих двух типов инфор­мационных технологий. Следующий тип родственных информационных техно­логий - технологии обработки изображений растровых графических редакто­ров. Некоторые реализации ГИТ базируются на растровом представлении гра­фических данных. Поэтому очень многие современные ГИС общего назначения интегрируют возможности как векторного, так и растрового представления. В свою очередь, ряд технологий обработки изображений, предназначенных для работы с данными аэро- и космических съемок, очень близко примыкают к ГИТ, а иногда частично выполняют и их функции. Но обычно они к ГИТ ком­плементарны и имеют специальные средства для взаимодействия с ними (ERDAS LiveLink to ARC/INFO)

Близкородственны к ГИТ картографические (геодезические) технологии, применяющиеся при обработке данных полевых геодезических съемок и по­строении по ним карт (при построении карт по аэроснимкам с использованием фотограмметрических методик и при работах с цифровой моделью рельефа ме­стности). Здесь также наблюдается тенденция к интеграции, т.к. подавляющее число современных ГИС включают в себя средства координатной геометрии (COGO), которые позволяют непосредственно использовать данные полевых геодезических наблюдений, в том числе прямо с приборов с цифровой регист­рацией или с приемников спутниковой глобальной системы позиционирования (GPS). Фотограмметрические пакеты обычно ориентируются на совместную работу с ГИС и в ряде случаев включаются в ГИС как модули.

Сущность ГИТ проявляется в ее способности связывать с картографически­ми (графическими) объектами некоторую описательную (атрибутивную) ин­формацию (в первую очередь алфавитно-цифровую и иную графическую, зву­ковую и видеоинформацию). Как правило, алфавитно-цифровая информация организуется в виде таблиц реляционной БД. В простейшем случае каждому графическому объекту (точечному, линейному или площадному) ставится в со­ответствие строка таблицы - запись в БД. Использование такой связи и обеспе­чивает богатые функциональные возможности ГИТ. Эти возможности, естест­венно, различаются у разных систем, но есть базовый набор функций, обычно имеющийся в любой реализации ГИТ, например, возможность ответа на вопро­сы "что это?" указанием объекта на карте и "где это находится?" выделением на карте объектов, отобранных по некоторому условию в БД. К базовым можно также отнести ответ на вопрос "что рядом?" и его различные модификации. Ис­торически первое и наиболее универсальное использование ГИТ - это инфор­мационно-поисковые, справочные системы.

Таким образом, ГИТ можно рассматривать как некое расширение техноло­гии БД для координатно привязанной информации. Но даже в этом смысле она представляет собой новый способ интеграции и структурирования информации. Это обусловлено тем, что в реальном мире большая часть информации относит­ся к объектам, для которых важную роль играет их пространственное положе­ние, форма и взаиморасположение. Следовательно, ГИТ во многих приложени­ях значительно расширяют возможности обычных СУБД.

ГИТ, так же как и любая другая технология, ориентирована на решение оп­ределенного круга задач. Поскольку области применения ГИС достаточно ши­роки (военное дело, картография, география, градостроительство, организация транспортных диспетчерских служб, и т.д.), то ввиду специфики проблем, ре­шаемых в каждой из них, и особенностей, связанных с конкретным классом ре­шаемых задач и с требованиями, предъявляемыми к исходным и выходным данным, точности, техническим средствам и прочее, говорить о какой-то еди­ной ГИС-технологии достаточно проблематично.

Вместе с тем любая ГИТ включает в себя ряд операций, которые можно рас­сматривать как базовые. Они различаются в конкретных реализациях только де­талями, например, программным сервисом сканирования и постсканерной обра­ботки, возможностями геометрического преобразования исходного изображе­ния в зависимости от исходных требований и качества материала и т.д.

Поскольку приведенная модель является обобщенной, то естественно, что она либо не содержит отдельных блоков, свойственных какой-либо конкретной технологии, либо наоборот имеет в своем составе те блоки, которые в ряде слу­чаев могут отсутствовать.

По результатам анализа обобщенной модели ГИС-технологии можно выде­лить следующие базовые операции ГИТ:

  • редакционно-подготовительные работы, т. е. сбор, анализ и подготовка исходной информации (картографические данные, аэрофотоснимки, дан­ные дистанционного зондирования, результаты наземных наблюдений, статистическая информация и т.д.) для автоматизированной обработки;
  • проектирование геодезической и математической основ карт;
  • проектирование карт;
  • построение проекта цифровой тематической карты;
  • преобразование исходных данных в цифровую форму;
  • разработка макета тематического содержания карты;
  • определение методов автоматизированного построения тематического содержания;
  • формирование цифровой общегеографической основы создаваемой кар­ты;
  • создание цифровой тематической карты в соответствии с разработанным проектом;
  • получение выходной картографической продукции.

Для ввода исходной информации используются растровые сканирующие устройства, дигитайзеры, полутоновые сканеры аэрофотонегативов. Получен­ные цифровые массивы данных поступают в комплекс технических средств об­работки растровых и векторных данных, построенный на базе рабочих станций и персональных профессиональных ЭВМ. На этой же инструментальной базе осуществляются все этапы проектирования, преобразования исходной инфор­мации и создания цифровой тематической карты.

Сформированная цифровая картографическая модель поступает в комплекс технических средств формирования выходной картографической продукции, включающей в себя плоттеры, принтеры, специализированные устройства вы­вода на фотоноситель и т.д.

Исходные и обработанные цифровые данные хранятся в подсистеме архив­ного хранения данных, базирующейся в настоящее время на стримерах или на оптических дисках.

Области применения ГИТ в настоящее время чрезвычайно многообразны.

Прежде всего, это различные кадастры, системы управления распределен­ным хозяйством и инфраструктурой. Здесь развиты специализированные при­ложения, например, для систем: электрических сетей энергетической компании, кабельной сети телефонной или телевизионной компании, сложного трубопро­водного хозяйства большого химического завода, земельного кадастра, опери­рующие недвижимостью, а также такие приложения, как комплексные системы, обслуживающие многие составляющие инфраструктуры города или территории

и способные решать сложные задачи управления и планирования. Конкретные цели и задачи в таких системах очень разнообразны: от задач инвентаризации и учета, справочных систем общего пользования до налогообложения, градо- строительно-планировочных задач, планирования новых транспортных мар­шрутов и оптимизации перевозок, распределения сети ресурсов и услуг (скла­дов, магазинов, станций скорой помощи, пунктов проката автомобилей).

Еще одной развитой областью применения ГИТ является учет, изучение и использование природных ресурсов, включая сюда и охрану окружающей сре­ды. Здесь также встречаются как комплексные системы, так и специализиро­ванные: для лесного хозяйства, водного хозяйства, изучения и охраны дикой фауны и флоры и т.д. К этой области применения непосредственно примыкает использование ГИТ в геологии, как в научных, так и в практических ее задачах. Это не только задачи информационного обеспечения, но и, например, задача прогнозирования месторождений полезных ископаемых, контроль экологиче­ских последствий разработок и т.п. В геологических применениях, как и в эко­логических, велика роль приложений, требующих сложного программирования или комплексирования ГИТ со специфическими системами обработки и моде­лирования. Особенно в этом плане выделяются приложения в области нефти и газа. Здесь на стадии поисков и разведки широко используются данные сейсмо­разведки и весьма специфическое и развитое ПО по их обработке и анализу. Ве­лика потребность в комплексных решениях, увязывающих собственно геологи­ческие и иные проблемы, что невозможно решить без привлечения универсаль­ных ГИС.

Отдельно следует выделить сугубо транспортные задачи. Среди них: плани­рование новых маршрутов транспорта и оптимизация процесса перевозок с воз­можностью учета распределения ресурсов и меняющейся транспортной обста­новки (ремонты, пробки, таможенные барьеры). Особенно перспективными в стратегическом плане предполагаются навигационные системы, особенно бази­рующиеся на спутниковых системах навигации с использованием цифровой картографии.

Характерной чертой внедрения ГИТ в настоящее время является интеграция систем и баз данных в национальные, международные и глобальные информа­ционные структуры. К глобальным проектам относится, например, GDPP - "Проект глобальной базы данных", разрабатываемый в рамках Международной геосферно-биосферной программы. На национальном уровне существуют ГИС в США, Канаде, Франции, Швеции, Финляндии и других странах. В России в настоящее время разрабатываются региональные ГИС, в частности, для ведения земельного кадастра и муниципального управления, а также ведомственные ГИС, например, в Министерстве внутренних дел.

Анализ существующего на сегодняшний день опыта применения ГИТ пока­зывает, что основной формой применения ГИТ является различные по целям, сложности, составу и возможностям ГИС.

Современные ГИС представляют собой новый тип интегрированных систем, которые, с одной стороны, включают методы обработки данных существующих автоматизированных систем, а с другой - обладают спецификой в организации и обработке данных

Так как в ГИС осуществляется комплексная обработка информации (от ее сбора до хранения, обновления и предоставления), их можно рассматривать со следующих различных точек зрения:

  • ГИС как система управления - предназначена для обеспечения поддерж­ки принятия решений на основе использования картографических дан­ных;
  • ГИС как автоматизированная информационная система - объединяет ряд технологий известных информационных систем (САПР и других);
  • ГИС как геосистема - включает технологии фотометрии, картографии;
  • ГИС как система, использующая БД, - характеризуется широким набо­ром данных, собираемых с помощью разных методов и технологий;
  • ГИС как система моделирования, система предоставления информации - является развитием систем документального оборота, систем мультиме­диа и т.д.

ГИС с развитыми аналитическими возможностями близки к системам стати­стического анализа и обработки данных, причем в ряде случаев они интегриро­ваны в единые системы, например:

имплантация в современную ГИС ARC/INFO мощного статистического пакета S-PLUS;

добавление некоторых возможностей пространственной статистики и картографической визуализации в массовые статистические пакеты (SYSTATfor Windows);

развитие собственной ГИС в рамках пакета SAS - лидера среди систем обработки числовой информации.

Наиболее развитые ГИС (обычно с сильной поддержкой и растровой моде­ли), имеющие хорошие средства программирования, широко используются для моделирования природных и техногенных процессов, в том числе распростра­нения загрязнений, лесных пожаров и др. Некоторые обычные СУБД, рабо­тающие в графических средах типа MS Windows, также включают в себя про­стейшие средства картографической визуализации.

Наличие широкого спектра тенденций развития в разных областях информа­ционных технологий, интересы которых сходятся в области ГИТ, а также появ­ление универсальных пакетов широкого применения привело к тому, что гра­ницы определения ГИТ становятся менее четкими. Поэтому в настоящее время сложилось понятие полнофункциональная ГИС (full GIS).

Современная полнофункциональная ГИС - это многофункциональная ин­формационная система, предназначенная для сбора, обработки, моделирования и анализа пространственных данных, их отображения и использования при ре­шении расчетных задач, подготовке и принятии решений. Основное назначение полнофункциональной ГИС заключается в формировании знаний о Земле, от­дельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью дос­тижения наибольшей эффективности их работы.

Полнофункциональная ГИС должна обеспечивать:

  • двустороннюю связь между картографическими объектами и записями табличной базы данных;
  • управление визуализацией объектов, обеспечивающее выбор состава и формы отображения;
  • работу с точечными, линейными и площадными объектами;
  • ввод карт с дигитайзера или сканера и их редактирование;
  • поддержку топологических взаимоотношений между объектами и про­верку с их помощью геометрической корректности карты, в т.ч. замкну­тости площадных объектов, связности, прилегания и др.;
  • поддержку различных картографических проекций;
  • геометрические измерения на карте длины, периметра, площади и др.;построение буферных зон вокруг объектов и реализацию других овер­лейных операций;
  • создание собственных обозначений, в том числе новых типов маркерных знаков, типов линий, типов штриховок и др.;создание дополнительных элементов оформления карты, в частности подписей, рамок, легенд;
  • вывод высококачественных твердых копий карт;решение транспортных и других задач на графах, например, определение кратчайшего пути и т.п.;
  • работу с топографической поверхностью.

Помимо полнофункциональных ГИС общего назначения, выделяют специа­лизированные, которые часто имеют нечеткие границы со специализированны­ми пакетами, не являющимися в этом смысле ГИС. Например, ГИС, ориентиро­ванные на задачи планирования связи, транспортные и навигационные задачи, задачи инженерных изысканий и проектирования сооружений.

Неспециализированные ГИС более низкого уровня, чем полнофункциональ­ные системы общего назначения, обычно называют "персональными системами картографической визуализации" {desktop mapping systems, desktop GIS), иногда даже отделяя этот класс систем от собственно ГИС. Отличительной их чертой являются, прежде всего, ограниченные аналитические возможности (например, отсутствуют оверлейные операции для площадных объектов) и слабые возмож­ности ввода и редактирования картографической основы. Типичным примером такой системы является ГИС Maplnfo, в которой за счет своей меньшей сложно­сти более проста в обучении и использовании и более доступна массовому пользователю.

К настоящему времени число ГИС-пакетов, предлагаемых на рынке, исчис­ляется несколькими тысячами. Однако в большинстве это специализированные системы. Реальных полнофункциональных ГИС-пакетов общего назначения на рынке несколько десятков. В основном программное обеспечение для ГИС раз­рабатывают специализированные фирмы, только в некоторых случаях это про­дукты крупных фирм, для которых ГИС - не основной продукт (IBM, Intergraph, Computervision, Westinghouse Electric Corp., McDonnel Douglas, Siemens Nixdorf). По числу известных пакетов и по числу инсталляций преобладают ПК (MS DOS, MS Windows) и UNIX- рабочие станции.

Следует отметить, что в настоящее время полнофункциональные ГИС обще­го назначения в основном ориентированы на рабочие станции с операционной системой UNIX. На ПК, как правило, функционируют системы с редуцирован­ными возможностями. Отчасти это определяется спецификой пользователей ПК, для многих из которых простая ГИС нужна только как дополнение к обыч­ному офисному ПО. Но главная причина - в требованиях, которые мощная ГИС предъявляет к аппаратным средствам компьютера.

Топологические векторные структуры данных по своей природе сложны, а процессы их использования требуют интенсивных расчетов, существенно боль­ших, чем работа с обычной векторной графикой, в том числе и в части операций с плавающей точкой. Серьезные приложения часто требуют работы с длинными целыми и действительными числами двойной точности. Для работы с ГИС ну­жны дисплеи высокого разрешения и быстрый графический адаптер или акселе­ратор, причем требования к палитре жестче, чем в САПР. Они скорее аналогич­ны требованиям к издательским системам профессиональной полиграфии. Осо­бенно высокие требования к скорости отрисовки предъявляет типичная для ГИС (и менее типичная для САПР) задача заливки штриховками большого чис­ла замкнутых многоугольников (полигонов) сложной формы.

Серьезные проекты с использованием ГИС требуют работы с большими объемами данных, от сотен мегабайт до нескольких десятков гигабайт. Особен­но высокие требования к объемам дисковой и основной памяти, а также к быст­родействию компьютера, предъявляют ГИС с обработкой изображения в виде растровых структур, например, в задачах геометрической коррекции аэросним­ков, моделирования природных процессов и при работе с рельефом земной по­верхности. Один цветной аэроснимок высокого разрешения стандартного фор­мата, если перевести его в цифровую форму без потери "точности" (24 bit, 1200 dpi) занимает около 200 Мб. Во многих задачах регионального характера требу­ется использовать совмещенную и геометрически откорректированную мозаику из мйогих таких снимков, тем более, что признано целесообразным использо­вать растровую подложку из такой мозаики аэро- или космических снимков (digital orthophoto) в качестве базового слоя для векторных карт, т.е. фотосним­ки "впечатываются" в изображение карты. То же замечание справедливо и для работы с аэрокосмическими снимками, которые, как правило, должны обраба­тываться различными способами, чтобы избирательно выделить на них различ­ную информацию (операции различного рода фильтрации, преобразования кон­траста, операции с использованием быстрого преобразования Фурье, классифи­кационные алгоритмы, дискриминантный, кластерный и факторный анализ, а также метод главных компонент). Поэтому вместо того, чтобы хранить десятки версий обработки, что потребовало бы до сотен Гбайт на 1 кадр, рациональнее

выполнять их по требованию. Современные специализированные рабочие стан­ции справляются с такой задачей, для ПК же она еще трудна. Иногда операция с одним кадром на ПК длится несколько минут. Когда необходимо моделировать сложные природные процессы, в частности распространение загрязнения, лес­ных пожаров, либо применять данные аэрокосмических съемок, использование специализированной рабочей станции неизбежно.

Следует отметить, что скорость накопления объемов аэрокосмических (осо­бенно космических) данных пока идет в том же темпе или даже опережает тем­пы роста вычислительных мощностей ПК и рабочих станций. Действительно, ежемесячно над каждым участком Земли размером с большой город собирается не менее 800-1000 Мбайт спутниковых изображений. И если даже учесть, что половина их по условиям облачности непригодна для использования в ГИТ- приложениях, все равно это составляет огромный поток. И еще одно замечание: разрешение систем сбора дистанционной информации постоянно растет, а уве­личение геометрического разрешения на местности с 20 до 10 м увеличивает объем данных в 4 раза. Так что каждые 2-4 года компьютерная система должна в несколько раз увеличивать свою производительность, чтобы не отстать от темпов развития устройств сбора информации. Отсюда ясно, что еще длитель­ное время технической основой мощных полнофункциональных ГИС с анали­тическими функциями будут оставаться специализированные рабочие станции.

Еще одним моментом, который обуславливает необходимость обращения существенного внимания к рабочим WVZY-станциям является тот факт, что се­годня основные пакеты наиболее "серьезных" ГИС еще не переведены на ПК.

Основными направлениями использования ПК при работе с ГИС в настоя­щее время являются:

  • использование ПК в качестве терминалов совместно с рабочими стан­циями для работы с большими ГИС (ARC/INFO);
  • использование ПК в качестве станций ввода и модификации цифровых карт местности с дигитайзера или сканера (PC ARC!INFO, ArcCAD);
  • использование ПК для ГИТ-проектов с небольшим объемом единовре­менно активной информации (PC ARC/INFO, ArcCAD, ArcView);
  • использование ПК в учебных целях, для знакомства с методологией ГИТ;
  • использование ПК на начальных стадиях больших проектов, когда объем базы данных еще не вырос, не требуется полная функциональность на больших объемах и требуется еще доказывать полезность использования ГИТ и необходимость вложения серьезных средств.

Так как современные ГИС представляют собой, как правило, сложные про­граммно-информационные комплексы, разработанные специально для приме­нения в конкретных областях информационной деятельности или для решения специализированных задач, то в их состав входят:

  • операционная система;
  • ядро прикладного программного обеспечения;
  • модули тематической обработки данных;
  • интерактивный интерфейс пользователя.

К модулям тематической обработки данных относятся:

  • программное обеспечение ввода-вывода данных;
  • прикладное программное обеспечение анализа векторной и растровой информации;
  • СУБД;
  • программное обеспечение распознавания образов;
  • программное обеспечение выбора картографической проекции;
  • программное обеспечение для преобразования изображений;
  • программное обеспечение картографической генерализации;
  • программное обеспечение генерации условных знаков и т.д..

Геоинформационные технологии можно определить как совокупность программно-технологических, методических средств получения новых видов информации об окружающем мире. Они предназначены для повышения эффективности: процессов управления, хранения и представления информации, обработки и поддержки принятия решений. Это заключается во внедрении геоинформационных технологий в науку, производство, образование и применение в практической деятельности получаемой информации об окружающей реальности.

Геоинформационные технологии являются новыми информационными технологиями, направленными на достижение различных целей, включая информатизацию производственно-управленческих процессов. Особенностью геоинформационных систем (далее - ГИС) является то, что как информационные системы они являются результатом эволюции этих систем и поэтому включают в себя основы построения и функционирования информационных систем. ГИС как система включает множество взаимосвязанных элементов, каждый из которых связан прямо или косвенно с каждым другим элементом, а два любые подмножества этого множества не могут быть независимыми, не нарушая целостность, единство системы.

Еще одной особенностью ГИС является то, что она является интегрированной информационной системой. Интегрированные системы построены на принципах интеграции технологий различных систем. Они зачастую применяются настолько в разных областях, что их название часто не определяет все их возможности и функции. По этой причине не следует связывать ГИС с решением задач только геодезии или географии. «Гео» в названии геоинформационных систем и технологий определяет объект исследований, а не предметную область использования этих систем.

Интеграция ГИС с другими информационными системами порождает их многоаспектность. В ГИС осуществляется комплексная обработка информации от сбора данных до ее хранения, обновления и представления, поэтому следует рассмотреть ГИС с различных позиций.

Как системы управления ГИС предназначены для обеспечения процесса принятия решений по оптимальному управлению землями и ресурсами, городским хозяйством, организации транспорта и розничной торговли, использованию океанов или других пространственных объектов. В отличие от информационных систем, в ГИС появляется множество новых технологий пространственного анализа данных, объединенных с технологиями электронного офиса и оптимизации решений на этой основе. В силу этого ГИС является эффективным методом преобразования и синтеза разнообразных данных для задач управления.

Как геосистемы ГИС интегрируют технологии сбора информации таких систем, как: географические информационные системы, системы картографической информации, автоматизированные системы картографирования, автоматизированные фотограмметрические системы, земельные информационные системы, автоматизированные кадастровые системы и т.п.

Как системы баз данных ГИС характерны широким набором данных, собираемых с помощью разных методов и технологий. При этом следует подчеркнуть, что они объединяют в себе возможности текстовых и графических баз данных.

Как системы моделирования ГИС использует максимальное количество методов и процессов моделирования, применяемых в других информационных системах и в первую очередь в САПР.

Как системы получения проектных решений ГИС во многом используют концепции и методы автоматизированного проектирования и решают ряд специальных проектных задач, которые в типовом автоматизированном проектировании не встречаются.

Как системы представления информации ГИС являются развитием автоматизированных систем документационного обеспечения с использованием современных технологий мультимедиа. Они обладают средствами деловой графики и статистического анализа и дополнительно к этому средствами тематического картографирования. Именно эффективность последнего обеспечивает разнообразное решение задач в разных отраслях при использовании интеграции данных на основе картографической информации.

Как прикладные системы ГИС не имеют себе равных по широте, так как применяются в транспорте, навигации, геологии, географии, военном деле, топографии, экономике, экологии и т.д.

Как системы массового использования ГИС позволяют использовать картографическую информацию на уровне деловой графики, что делает их доступными любому школьнику или бизнесмену, а не только специалисту географу. Именно поэтому принятие многих решений на основе ГИС-технологий не сводится к созданию карт, а лишь использует картографические данные.

Организация данных в ГИС. Тематические данные хранятся в ГИС в виде таблиц, поэтому проблем с их хранением и организацией в базах данных не возникает. Наибольшие проблемы представляет хранение и визуализация графических данных.

Основным классом данных ГИС являются координатные данные, содержащие геометрическую информацию и отражающие пространственный аспект. Основные типы координатных данных: точка (узлы, вершины), линия (незамкнутая), контур (замкнутая линия), полигон (ареал, район). На практике для построения реальных объектов используют большее число данных (например, висячий узел, псевдоузел, нормальный узел, покрытие, слой и др.). На рис. 3.1 показаны основные из рассмотренных элементов координатных данных .

Рассмотренные типы данных имеют большее количество разнообразных связей, которые можно условно разделить на три группы:

  • взаимосвязи для построения сложных объектов из простых элементов;
  • взаимосвязи, вычисляемые по координатам объектов;
  • взаимосвязи, определяемые с помощью специального описания и семантики при вводе данных.

В общем случае модели пространственных (координатных) данных могут иметь векторное или растровое (ячеистое) представление, содержать или не содержать топологические характеристики. Этот подход позволяет классифицировать модели по трем типам: растровая модель; векторная нетопологическая модель; векторная топологическая модель. Все эти модели взаимно преобразуемы. Тем не менее при получении каждой из них необходимо учитывать их особенности. В ГИС форме представления координатных данных соответствуют два основных подкласса моделей: векторные и растровые (ячеистые или мозаичные ). Возможен класс моделей, которые содержат характеристики как векторов, так и мозаик. Они называются гибридными моделями.

Рис. 3.1.

Графическое представление какой-либо ситуации на экране компьютера подразумевает отображение на экране различных графических образов. Сформированный графический образ на экране ЭВМ состоит из двух различных с точки зрения среды хранения частей - графической «подложки» или графического фона и других графических объектов. По отношению к этим другим графическим образам «образ- подложка» является «площадным», или пространственным двухмерным изображением. Основной проблемой при реализации геоинформаци- онных приложений является трудность формализованного описания конкретной предметной области и ее отображения на электронной карте.

Таким образом, геоинформационные технологии предназначены для широкого внедрения в практику методов и средств информационного взаимодействия над пространственно-временными данными, представляемыми в виде системы электронных карт, и предметно-ориентированных сред обработки разнородной информации для различных категорий пользователей.

Рассмотрим более подробно основные графические модели.

Векторные модели широко применяются в ГИС. Они строятся на векторах, занимающих часть пространства, в отличие от занимающих все пространство растровых моделей. Это определяет их основное преимущество - требование на порядки меньшей памяти для хранения и меньших затрат времени на обработку и представление, а главное - более высокая точность позиционирования и представления данных. При построении векторных моделей объекты создаются путем соединения точек прямыми линиями, дугами окружностей, полилиниями. Площадные объекты - ареалы задаются наборами линий.

Векторные модели используются преимущественно в транспортных, коммунальных, маркетинговых приложениях ГИС. Системы ГИС, работающие в основном с векторными моделями, получили название векторных ГИС. В реальных ГИС имеют дело не с абстрактными линиями и точками, а с объектами, содержащими линии и ареалы, занимающими пространственное положение, а также со сложными взаимосвязями между ними. Поэтому полная векторная модель данных ГИС отображает пространственные данные как совокупность следующих основных частей: геометрические (метрические) объекты (точки, линии и полигоны); атрибуты - признаки, связанные с объектами; связи между объектами. Векторные модели (объектов) используют в качестве элементарной модели последовательность координат, образующих линию. Линией называют границу, сегмент, цепь или дугу. Основные типы координатных данных в классе векторных моделей определяются через базовый элемент линия следующим образом. Точка определяется как выродившаяся линия нулевой длины, линия - как линия конечной длины, а площадь представляется последовательностью связанных между собой отрезков. Каждый участок линии может являться границей для двух ареалов либо двух пересечений (узлов). Отрезок общей границы между двумя пересечениями (узлами) имеет разные названия, которые являются синонимами в предметной области ГИС. Специалисты по теории графов предпочитают слову «линия» термин «ребро», а для обозначения пересечения употребляют термин «вершина». Национальным стандартом США официально санкционирован термин «цепь». В некоторых системах (Arclnfo , GeoDraw ) используется термин «дуга». В отличие от обычных векторов в геометрии, дуги имеют свои атрибуты. Атрибуты дуг обозначают полигоны по обе стороны от них. По отношению к последовательному кодированию дуги эти полигоны именуются левый и правый. Понятие дуги (цепи, ребра) является фундаментальным для векторных ГИС.

Векторные модели получают разными способами. Один из наиболее распространенных - векторизация сканированных (растровых) изображений.

Векторизация - процедура выделения векторных объектов с растрового изображения и получение их в векторном формате. Для векторизации необходимо высокое качество (отчетливые линии и контуры) растровых образов. Чтобы обеспечить требуемую четкость линий иногда приходится заниматься улучшением качества изображения.

При векторизации возможны ошибки, исправление которых осуществляется в два этапа:

  • 1) корректировка растрового изображения до его векторизации;
  • 2) корректировка векторных объектов.

Векторные модели с помощью дискретных наборов данных отображают непрерывные объекты или явления. Следовательно, можно говорить о векторной дискретизации. При этом векторное представление позволяет отразить большую пространственную изменчивость для одних районов, чем для других, по сравнению с растровым представлением, что обусловлено более четким показом границ и их меньшей зависимостью от исходного образа (изображения), чем при растровом отображении. Это типично для социальных, экономических, демографических явлений, изменчивость которых в ряде районов более интенсивна.

Некоторые объекты являются векторными по определению, например границы соответствующего земельного участка, границы районов и т.д. Поэтому векторные модели обычно используют для сбора данных координатной геометрии (топографические записи), данных об административно-правовых границах и т.п.

Особенности векторных моделей: в векторных форматах набор данных определен объектами базы данных. Векторная модель может организовывать пространство в любой последовательности и дает «произвольный доступ» к данным. В ней легче осуществляются операции с линейными и точечными объектами, например, анализ сети - разработка маршрутов движения по сети дорог, замена условных обозначений. В растровых форматах точечный объект должен занимать целую ячейку. Это создает ряд трудностей, связанных с соотношением размеров растра и размера объекта.

Что касается точности векторных данных, то здесь можно говорить о преимуществе векторных моделей перед растровыми, так векторные данные могут кодироваться с любой мыслимой степенью точности, которая ограничивается лишь возможностями метода внутреннего представления координат. Обычно для представления векторных данных используется 8 или 16 десятичных знаков (одинарная или двойная точность). Только некоторые классы данных, получаемых в процессе измерений, соответствуют точности векторных данных: это данные, полученные точной съемкой (координатная геометрия); карты небольших участков, составленные по топографическим координатам и политические границы, определенные точной съемкой.

Не все природные явления имеют характерные четкие границы, которые можно представить в виде математически определенных линий. Это обусловлено динамикой явлений или способами сбора пространственной информации. Почвы, типы растительности, склоны, место обитания диких животных - все эти объекты не имеют четких границ. Обычно линии на карте имеют толщину 0,4 мм и, как часто считается, отражают неопределенность положения объекта. В растровой системе эта неопределенность задается размером ячейки. Поэтому следует помнить, что в ГИС действительное представление о точности дают размер растровой ячейки и неопределенность положения векторного объекта, а не точность координат. Для анализа связей в векторных моделях необходимо рассмотреть их топологические свойства, т.е. рассмотреть топологические модели, которые являются разновидностью векторных моделей данных.

В растровых моделях дискретизация осуществляется наиболее простым способом - весь объект (исследуемая территория) отображается в пространственные ячейки, образующие регулярную сеть. Каждой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам (цвет, плотность) участок поверхности. Ячейка модели характеризуется одним значением, являющейся средней характеристикой участка поверхности. Эта процедура называется пикселизацией. Растровые модели делятся на регулярные, нерегулярные и вложенные (рекурсивные или иерархические) мозаики. Плоские регулярные мозаики бывают трех типов: квадрат (рис. 3.2), треугольник и шестиугольник (рис. 3.3).


Рис. 3.2.


Рис. 3.3.

Квадратная форма удобна при обработке больших объемов информации, треугольная - для создания сферических поверхностей. В качестве нерегулярных мозаик используют треугольные сети неправильной формы (Triangulated Irregular Network - TIN) и полигоны Тиссена (рис. 3.4). Они удобны для создания цифровых моделей отметок местности по заданному набору точек.

Таким образом, векторная модель содержит информацию о местоположении объекта, а растровая - о том, что расположено в той или иной точке объекта. Векторные модели относятся к бинарным или ква- зибинарным.


Рис. 3.4.

Если векторная модель дает информацию о том, где расположен тот или иной объект, то растровая - информацию о том, что расположено в той или иной точке территории. Это определяет основное назначение растровых моделей - непрерывное отображение поверхности. В растровых моделях в качестве атомарной модели используют двухмерный элемент пространства - пиксель (ячейка). Упорядоченная совокупность атомарных моделей образует растр, который, в свою очередь, является моделью карты или геообъекта. Векторные модели относятся к бинарным или квазибинарным. Растровые позволяют отображать полутона и цветовые оттенки. Как правило, каждый элемент растра или каждая ячейка должны иметь лишь одно значение плотности или цвета. Это применимо не для всех случаев. Например, когда граница двух типов покрытий может проходить через центр элемента растра, элементу дается значение, характеризующее большую часть ячейки или ее центральную точку.

Ряд систем позволяет иметь несколько значений для одного элемента растра. Для растровых моделей существует ряд характеристик: разрешение, значение, ориентация, зоны, положение.

Разрешение - минимальный линейный размер наименьшего участка отображаемого пространства (поверхности), отображаемый одним пикселем. Пиксели обычно представляют собой прямоугольники или квадраты, реже используются треугольники и шестиугольники. Более высоким разрешением обладает растр с меньшим размером ячеек. Высокое разрешение подразумевает обилие деталей, множество ячеек, минимальный размер ячеек.

Значение - элемент информации, хранящийся в элементе растра (пикселе). Поскольку при обработке применяют типизированные данные, т.е. необходимость определить типы значений растровой модели. Тип значений в ячейках растра определяется как реальным явлением, так и особенностями ГИС. В частности, в разных системах можно использовать разные классы значений: целые числа, действительные (десятичные) значения, буквенные значения. Целые числа могут служить характеристиками оптической плотности или кодами, указывающими на позицию в прилагаемой таблице или легенде. Например, возможна следующая легенда, указывающая наименование класса почв: О - пустой класс, 1 - суглинистые, 2 - песчаные, 3 - щебнистые и т.п.

Ориентация - угол между направлением на север и положением колонок растра.

Зона растровой модели включает соседствующие друг с другом ячейки, имеющие одинаковое значение. Зоной могут быть отдельные объекты, природные явления, ареалы типов почв, элементы гидрографии и т.п. Для указания всех зон с одним и тем же значением используют понятие «класс зон». Естественно, что не во всех слоях изображения могут присутствовать зоны. Основные характеристики зоны - ее значение и положение.

Буферная зона - зона, границы которой удалены на известное расстояние от любого объекта на карте. Буферные зоны различной ширины могут быть созданы вокруг выбранных объектов на базе таблиц сопряженных характеристик.

Положение обычно задается упорядоченной парой координат (номер строки и номер столбца), которые однозначно определяют положение каждого элемента отображаемого пространства в растре. Проводя сравнение векторных и растровых моделей, отметим удобство векторных для организации и работы со взаимосвязями объектов. Тем не менее, используя простые приемы, например, включая взаимосвязи в таблицы атрибутов, можно организовать взаимосвязи и в растровых системах.

Необходимо остановиться на вопросах точности отображения в растровых моделях. В растровых форматах в большинстве случаев неясно, относятся ли координаты к центральной точке пикселя или к одному из его углов. Поэтому точность привязки элемента растра определяют как 1/2 ширины и высоты ячейки.

Растровые модели имеют следующие достоинства:

  • растр не требует предварительного знакомства с явлениями, данные собираются с равномерно расположенной сети точек, что позволяет в дальнейшем на основе статистических методов обработки получать объективные характеристики исследуемых объектов. Благодаря этому растровые модели могут использоваться для изучения новых явлений, о которых не накоплен материал. В силу простоты этот способ получил наибольшее распространение;
  • растровые данные проще для обработки по параллельным алгоритмам и этим обеспечивают более высокое быстродействие по сравнению с векторными;
  • некоторые задачи, например создание буферной зоны, намного проще решать в растровом виде;
  • многие растровые модели позволяют вводить векторные данные, в то время как обратная процедура весьма затруднительна для векторных моделей;
  • процессы растеризации намного проще алгоритмически, чем процессы векторизации, которые зачастую требуют экспертных решений.

Цифровая карта может быть организована в виде множества слоев (покрытий или карт подложек). Слои в ГИС представляют набор цифровых картографических моделей, построенных на основе объединения (типизации) пространственных объектов, имеющих общие функциональные признаки. Совокупность слоев образует интегрированную основу графической части ГИС. Пример слоев интегрированной ГИС представлен на рис. 3.5.

Рис. 3.5.

Важным моментом при проектировании ГИС является размерность модели. Применяют двухмерные модели координат (2D) и трехмерные (3D). Двухмерные модели используются при построении карт, а трехмерные - при моделировании геологических процессов, проектировании инженерных сооружений (плотин, водохранилищ, карьеров и др.), моделировании потоков газов и жидкостей.

Существует два типа трехмерных моделей:

  • 1) псевдотрехмерные, когда фиксируется третья координата;
  • 2) истинное трехмерное представление.

Большинство современных ГИС осуществляют комплексную обработку информации:

  • сбор первичных данных;
  • накопление и хранение информации;
  • различные виды моделирования (семантическое, имитационное, геометрическое, эвристическое);
  • автоматизированное проектирование;
  • документационное обеспечение.

Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам:

  • 1) по функциональным возможностям :
    • полнофункциональные ГИС общего назначения,
    • специализированные ГИС ориентированы на решение конкретной задачи в какой-либо предметной области,
    • информационно-справочные системы для домашнего и информационно-справочного пользования.

Функциональные возможности ГИС определяются также архитектурным принципом их построения:

  • закрытые системы - не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки,
  • открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования) ;
  • 2) пространственному (территориальному ) охвату :
    • глобальные (планетарные),
    • общенациональные,
    • региональные,
    • локальные (в том числе муниципальные);
  • 3) проблемно-тематической ориентации :
    • общегеографические,
    • экологические и природопользовательские,
    • отраслевые (водных ресурсов, лесопользования, геологические, туризма и т.д.);
  • 4) способу организации географических данных :
    • векторные,
    • растровые,
    • векторно-растровые ГИС.

В качестве источников данных для формирования ГИС служат:

  • картографические материалы (топографические и общегеографические карты, карты административно-территориального деления, кадастровые планы и др.). Сведения, получаемые с карт, имеют территориальную привязку, поэтому их удобно использовать в качестве базового слоя ГИС. Если нет цифровых карт на исследуемую территорию, тогда графические оригиналы карт преобразуются в цифровой вид;
  • данные дистанционного зондирования (далее - ДДЗ) все шире используются для формирования баз данных ГИС. К ДДЗ прежде всего относят материалы, получаемые с космических носителей. Для дистанционного зондирования применяют разнообразные технологии получения изображений и передачи их на Землю, носители съемочной аппаратуры (космические аппараты и спутники) размещают на разных орбитах, оснащают разной аппаратурой. Благодаря этому получают снимки, отличающиеся разным уровнем обзорности и детальности отображения объектов природной среды в разных диапазонах спектра (видимый и ближний инфракрасный, тепловой инфракрасный и радиодиапазон). Все это обуславливает широкий спектр экологических задач, решаемых с применением ДДЗ. К методам дистанционного зондирования относятся аэро- и наземные съемки и другие неконтактные методы, например гидроакустические съемки рельефа морского дна. Материалы таких съемок обеспечивают получение как количественной, так и качественной информации о различных объектах природной среды;
  • материалы полевых изысканий территорий включают данные топографических, инженерно-геодезических изысканий, кадастровой съемки, геодезические измерения природных объектов, выполняемые нивелирами, теодолитами, электронными тахеометрами, GPS- приемниками, а также результаты обследования территорий с применением геоботанических и других методов, например, исследования по перемещению животных, анализ почв и др.;
  • статистические данные содержат данные государственных статистических служб по самым разным отраслям народного хозяйства, а также данные стационарных измерительных постов наблюдений (гидрологические и метеорологические данные, сведения о загрязнении окружающей среды и т.д.));
  • литературные данные (справочные издания, книги, монографии и статьи, содержащие разнообразные сведения по отдельным типам географических объектов).

В ГИС редко используется только один вид данных, чаще всего это сочетание разнообразных данных на какую-либо территорию.

Основные области использования ГИС:

  • электронные карты;
  • городское хозяйство;
  • государственный земельный кадастр;
  • экология;
  • дистанционное зондирование;
  • экономика;
  • специальные системы военного назначения.

На практике наиболее хорошо себя зарекомендовали для работы с мелкомасштабными «природными» картами (геология, сельское хозяйство, навигация, экология и т.п.) такие ГИС, как Arclnfo и ArcView GIS. Обе системы разработаны американской компанией ESRI (www. esri.com, www.dataplus.ru) и весьма распространены в мире.

Из относительно простых западных ГИС, которые начинали свою родословную с анализа территорий в объеме, необходимом для бизнеса и относительно простых применений, можно назвать систему Maplnfo, которая также распространена в мире весьма широко. Эта система очень быстро прогрессирует и сегодня может составить конкуренцию самым развитым ГИС.

Корпорацией Intergraph (www.intergraph.com) поставляется ГИС MGE, базирующаяся на основе AutoCAD-подобной системы MicroStation, выпускаемой в свою очередь компанией Bendy. Система MGE представляет собой целое семейство различных программных продуктов, помогающих решать набольшее множество задач, существующих в области геоинформатики.

Все указанные продукты имеют и интернет-ГИС-серверы, позволяющие публиковать цифровые карты в Интернете. Правда, приходится говорить только о вьюерах, поскольку обеспечить сегодня редактирование топологических карт со стороны удаленного клиента Интернета нельзя по причине недостаточной развитости как ГИС-, так и интернет- технологий.

Буквально недавно вышла на рынок ГИС и Microsoft, подтвердив тем самым, что ГИС станет в ближайшем будущем такой системой, которую должен иметь на своем компьютере всякий мало-мальски уважающий себя пользователь, как он имеет сегодня у себя Excel или Word. Microsoft выпустила продукт MapPoint (Microsoft MapPoint 2000 Business Mapping Software ), который войдет в состав Office 2000. Эта компонента офисного продукта будет ориентирована в основном на бизнес-планирование и анализ.

Повторением концепции Arclnfo, но сильно уступающей последней по функциональной полноте является отечественная система GeoDraw, разработанная в ЦГИ ИГРАН (г. Москва). Возможности ее ограничены сегодня в основном мелкомасштабными картами. С нашей точки зрения, значительно «сильнее» здесь выглядит «старейшина» отечественной геоинформатики - ГИС Sinteks ABRIS. В последней хорошо представлены функции по анализу пространственной информации.

В геологии сильны позиции ГИС ПАРК (Ланэко, г. Москва), в которой также реализованы уникальные методы моделирования соответствующих процессов.

Наиболее «продвинутыми» в области представления и дежурства крупномасштабных насыщенных карт городов и генеральных планов крупных предприятий можно считать две отечественные системы: GeoCosm (ГЕОИД, г. Геленджик) и «ИнГео» (ЦСИ «Интегро», г. Уфа, www.integro.ru). Эти системы - одни из самых молодых и потому разрабатывались сразу с использованием самых современных технологий. А систему «ИнГео» разрабатывали даже не столько геодезисты, сколько специалисты, относящие себя к профессионалам в области имитационного моделирования и кадастровых систем.

В целом в России едва ли не в каждой организации создают свою ГИС. Однако, этот процесс - весьма непростой, и вероятность его завершения неудачно несравненно более высока, чем вероятность беспроблемной реализации, не говоря уже о возможности выхода коммерческого продукта, допускающего отчуждение от разработчиков.

Для эффективного управления регионами необходимо владеть достоверной и комплексной информацией об их экономическом состоянии и потенциале, в том числе о наличии и размещении полезных ископаемых, лесных, водных и земельных ресурсов, об экономическом развитии территорий, о размещении предприятий промышленности и сельского хозяйства, расселении населения, развитии дорожной сети, средств связи и других компонентов инфраструктуры, об экологическом состоянии территорий и другой информацией, необходимой для обоснованного принятия решений.

В России выделяются следующие территориальные уровни применения ГИС:

Глобальный уровень – Россия на глобальном и евразийском фоне масштаб 1:45 000 000 – 1:100 000 000;

Всероссийский уровень – вся территория страны, включая прибрежные акватории и приграничные районы, масштаб 1:2 500 000 – 1:20 000 000;

Региональный уровень – крупные природные и экономические регионы, субьекты федерации, масштаб 1:500 000 – 1:4 000 000;

Локальный уровень – области, районы, национальные парки, ареал кризисных ситуаций – 1:50 000 – 1 000 000;

Муниципальный уровень – города, городские районы, пригородные зоны, масштаб 1:50 000 и крупнее.

К проблемам ГИС Российской Федерации следует отнести:

Отсутствует, соответствующая современным требованиям система обеспечения органов государственной власти информацией, необходимой для эффективного управления территориальным развитием;

Низкий уровень автоматизации сбора, обработки, обновления и передачи информации, наличие межведомственных барьеров, что затрудняет своевременное получение информации органами государственной власти. Существующие в настоящее время ведомственные системы сбора и анализа данных по отдельным видам объектов управления, организационно и методически разрознены, что не позволяет эффективно взаимодействовать при принятии и обосновании конкретных управленческих решений по развитию территорий. Любой проект ГИС, разработанный на районном, городском или региональном уровне сталкивается с необходимостью существенных затрат по сбору первичных данных. Для большинства пользователей ГИС затраты на сбор данных являются чрезмерно большими (до 80% от общего объема затрат);

Отсутствие реальных технологий обновления данных. Обновление данных также требует существенных материальных затрат, однако без развитой системы обновления данных любая ГИС нежизнеспособна. Поэтому, создавая ГИС, необходимо тщательно отработать технологию обновления данных. Развитие секторов рынка, связанных с получением и использованием данных зондирования и других геоданных не возможно без решения задач автоматизированной актуализации данных;

Отсутствуют национальные стандарты на классификацию и кодирование топографической информации, на форматы обмена цифровыми топографическими данными, что может потребовать серьезных дополнительных затрат при объединении локальных, например ведомственных ГИС в объщегосударственную ГИС.

Государственная стратегия Российской Федерации в области ГИС определена постановлением Правительства Российской Федерации от 16 января 1995 г. N40 "Об организации работ по созданию геоинформационной системы органов государственной власти". Концепция создания ГИС для органов государственной власти региона (области) предусматривает выполнение мероприятий по внедрению в органы управления современных геоинформационных технологий для комплексного анализа многоаспектной, разнородной информации при решении задач управления развитием региона (области) и ее территорий, по формированию единого геоинформационного пространства.

В настоящее время более 100 организаций и фирм распространяет в России отечественные и зарубежные системы для создания ГИС-технологий. Эти системы различаются как назначением, функциональными возможностями, так и требуемыми вычислительными ресурсами и стоимостью. Большинство инструментальных систем ориентированы на использование PC.

В зависимости от широты возможностей, ГИС общего назначения разделяются на полнофункциональные системы и системы картографической визуализации. Системы картографической визуализации называются настольными или персональными геоинформационными системами, обладают меньшей сложностью и стоимостью, ориентированы на вычислительные ресурсы персональных компьютеров, хотя имеют ограниченные аналитические возможности и слабые возможности редактирования картографической основы. Полнофункциональные ГИС сложны, удовлетворительно функционируют в полном объеме только на рабочих станциях и позволяют создавать проблемно-ориентированные геоинформационные системы с развитыми средствами пространственного анализа, что значимо, например для городских и муниципальных служб при решении задач в области экологии.

К наиболее развитым полнофункциональным ГИС относятся программные продукты фирмы ESRI США (ARC/INFO), фирмы Micro-station США (MGE Intergraph) и пакет фирмы Siemens Nixdorf Германия (SICAD). Лидером в области систем обработки аэрокосмических снимков считается система ERDAS Imagine США. В числе отечественных ГИС - векторный топологический редактор GeoDraw и средство композиционного построения цифровых карт и их анализа GeoGraph.

В списке настольных ГИС - программные средства ARC View (ESRI) и Maplnfo. Например, ARC View позволяет создавать самостоятельные проблемно-ориентированные прикладные системы и решать задачи муниципального управления, градостроительства, экологии. На ее основе создается ГИС мониторинга лесных пожаров России информационная система экологического мониторинга г. Москвы. Она применяется также в информационной системе МЧС России. Система ARC View GIS реализует объектно-ориентированный подход к управлению географической информацией и все более приближается по своим функциям к возможностям полнофункциональных систем, сохраняя при этом все преимущества настольной ГИС. Она позволяет выполнять анализ информации с построением графиков и диаграмм, преобразование картографических проекций непосредственно в процессе работы с картой, комбинации сложного логического, пространственного запросов, запросы через таблицы, диаграммы и графики.

ГИС России как система и ее методология совершенствуются и развиваются в следующих направлениях:

Развитие теории и практики информационных систем;

Изучение и обобщение опыта работы с пространственными данными;

Исследование и разработка концепций создания системы пространственно-временных моделей;

Совершенствование технологий автоматизированного изготовления электронных и цифровых карт;

Разработка технологий визуальной обработки данных;

Разработка методов поддержки принятия решений на основе интегрированной пространственной информации;

Интеллектуализация ГИС.

Геомаркетинг

Геомаркетинг- это понятие, обьединяющее в себе некий комплекс инструментов и методов по сбору, обработке, анализу и визуализации пространственной информации для оперативных и стратегических задач компаний.

Методология геомаркетинга основана на методологии информационного маркетинга. Геомаркетинговые информационные системы возникли на основе интеграции с маркетинговыми информационными системами.

Геомаркетинговые информационные системы работают с пространственно-локализованными данными, что обеспечивает:

Выявление скрытых закономерностей поведения спроса на продукцию в пространственно-временном разрезе;

Возможность применения пространственного анализа объектов для выявления их свойств и отношений не видимых при обычном анализа, например по табличным данным;

Глобальную интеграцию данных, позволяющую в совокупности, комплексно изучать объекты и явления;

Применение визуальных методов представления и обработки статистической информации.

Другими словами, геомаркетинг выгодно применять как эффективную рыночную информационную технологию.

Виды геомаркетинга:

- геомаркетинг мест, включает геомаркетинг жилья (застройка, предложения на продажу или внаем…), зон хозяйственной застройки (освоение участков, сдача в аренду и продажа заводов, магазинов и т.д.), геомаркетинг инвестиций в земельную собственность, мест отдыха и туризма;

- природоресурсный геомаркетинг включает в себя хозяйственное освоение, продажу и привлечение инвестиций в природоресурсные региональные образования;

- стимулирующий геомаркетинг совокупностью мер преодолевает негативное отношение на товары и услуги ГИС;

- развивающий геомаркетинг развивает спрос на новые товары ГИС (отдельных лиц, организаций и в целом объщества);

- политический гаомаркетинг направлен не на формирование или удовлетворение спроса на конкретную продукцию, а на удовлетворение политических желаний.

Задачи, решаемые геомаркетингом для территориально-распределенной торгово-розничной сети:

Оптимальное планирование сети торговой розницы и сервиса;

Открытие торговой точки в оптимальном месте, с учетом критериев доступности, максимального охвата потребителей, их проживания и потоков;

Управление ассортиментом товаров и продвижением торгового предприятия;

Оперативный сбор и обновление информации о рынках и конкурентных предприятиях.

При выборе нового места расположения торгового предприятия проводится комплекс геоинформационных, экономических и статистических анализов с использованием космических снимков Земли высокого разрешения. Учитываются существующая инфраструктура компании, внешние социально-экономические показатели, конкурентная среда и др.:

1. Оценка привлекательности места.

1.1 Общая численность населения по зонам транспортной доступности.

1.2 Численность экономически активного населения (16-60 лет).

1.3 Оценка уровня дохода жителей внутри зоны 15-ти минутной транспортной доступности.

1.4 Оценка транспортной сети и автомобильных потоков.

1.5 Оценка пешеходных потоков.

2. Конкурентный анализ внутри зоны 15-ти минутной доступности.

2.1 Оценка основных конкурентов по зонам.

2.2 Сравнение плотности конкурентов в зависимости от зон. Описание конкурентной ситуации.

3. Прогноз развития функционального назначения территорий внутри зон.

3.1 Оценка инфраструктуры на настоящий момент.

3.2 Оценка интенсивности жилого строительства.

3.3 Оценка интенсивности строительства объектов торговли, развлечения и спорта.

3.4 Оценка развития инфраструктуры.

3.5 Прогноз изменения количества потребителей.

К примеру, при оценке привлекательности места стоит обратить внимание на следующие особенности прилегающей к магазину территории:

Направление потоков движения жителей и возможность перенаправить эти потоки создав, например дополнительные пешеходные переходы и светофоры, одностороннее движение автомобилей и т.п.;

Наличие удобного подъезда и полноценной парковки в соответствии с форматом магазина;

Наличие тротуаров, газонов, уличного освещения и т. д. в соответствии с имиджем открывающегося магазина;

Удобство подхода (подъезда) к магазину покупателей – исключение конкуренции с подъезжающими автомобилями чужих клиентов и жителей близлежащих домов;

Удобство для разгрузочно-погрузочных работ;

Наличие участков, пригодных для выносной торговли и проведения акций для привлечения интереса покупателей;

Отсутствие нежелательных соседствующих объектов.

Геоинформатика (GIS tehnology, geo-informatics) - наука, технология и производственная деятельность по научному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем, по разработке геоинформационных технологий, или ГИС-технологий (GIS tehnology), по прикладным аспектам, или приложениям ГИС (GIS application) для практических или геонаучных целей.

Геоинформационные технологии - (GIS tehnology) - син. ГИС-технологии - технологическая основа создания географических информационных систем, позволяющая реализовать функциональные возможности ГИС.

Географическая информационная система (geographic(al) information system, GIS, spatial information system) - син. геоинформационная система, ГИС - информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных).

ГИС могут использоваться:

а) как информационные системы (визуальные базы данных), задачей которых является хранение информации о пространственных объектах и выдача ее по запросам с визуализацией объектов;

б) как информационные система с элементами обработки результатов топографо-геодезических съемок с дальнейшим занесением их в базу данных;

в) как комплексы, обслуживающие полный цикл по производству картографической продукции, начиная со сбора и обработки исходной информации и заканчивая подготовкой оригинал-макетов карт.

Для работы ГИС требуются мощные аппаратные средства: запоминающие устройства большой емкости, подсистемы отображения, оборудование высокоскоростных сетей.

В основе любой ГИС лежит информация о каком-либо участке земной поверхности: стране, континенте или городе. База данных организуется в виде набора слоев информации. Основной слой содержит географически привязанную карту местности (топооснова). На него накладываются другие слои, несущие информацию об объектах, находящихся на данной территории: коммуникации, промышленные объекты, земельные участки, почвы, коммунальное хозяйство, землепользование и другие. В процессе создания и наложения слоев друг на друга между ними устанавливаются необходимые связи, что позволяет выполнять пространственные операции с объектами посредством моделирования и интеллектуальной обработки данных. Как правило, информация представляется графически в векторном виде, что позволяет уменьшить объем хранимой информации и упростить операции по визуализации. С графической информацией связана текстовая, табличная, расчетная информация, координационная привязка к карте местности, видеоизображения, аудиокомментарии, база данных с описанием объектов и их характеристик. ГИС позволяет извлечь любые типы данных, визуализировать их. Многие ГИС включают аналитические функции, которые позволяют моделировать процессы, основываясь на картографической информации.


Основные сферы применения ГИС:

Геодезические, астрономо-геодезические и гравиметрические работы;

Топологические работы;

Картографические и картоиздательские работы;

Аэросъемочные работы;

Формирование и ведение банков данных перечисленных выше работ для всех уровней управления Российской Федерации, для отображения политического устройства мира, атласа автомобильных и железных дорог, границ РФ и зарубежных стран, экономических зон и т.д.

Но какими бы сложными не были функции, выполняемые той или иной ГИС, в любом случае информационная система работает с пространственными объектами и различными видами их представления. Поэтому можно говорить: данные, обрабатываемые ГИС, есть ни что иное как электронные карты. Электронная карта организована как множество слоев, функциональным назначением которых является объединение пространственных объектов (точнее набора данных характеризующих их в визуальной базе данных), имеющих какие-либо общие свойства. Такими свойствами могут быть:

Принадлежность к одному типу пространственных объектов (слой зданий, слой гидрообъектов, слой административных границ и т.д.);

Отображение на карте одним цветом;

Представление на карте одинаковыми графическими примитивами (линиями, точками, полигонами) и т.д.

Кроме того, слой может добавлять свойства объектам. Например, объекты, принадлежащие слою, не могут быть отредактированы, удалены, показаны и т.д.

Многослойная организация электронной карты при наличии гибкого механизма управления слоями позволяет объединить и отобразить гораздо большее количество информации, чем на обычной карте. В качестве отдельных слоев можно также представить исходные данные, в процессе обработки которых получается карта. Данные на этих слоях, как правило, могут обрабатываться как в интерактивном режиме так в полуавтоматическом и автоматическом.

ГИС содержит данные о пространственных объектах в форме их цифровых представлений (векторных, растровых, квадротомических и иных), включает соответствующий задачам набор функциональных возможностей ГИС, в которых реализуются операции геоинформационных технологий, или ГИС-технологий (GIS tehnology), поддерживается программным, аппаратным, информационным, нормативно-правовым, кадровым и организационным обеспечением.

Векторная графика - самая ранняя форма компьютерной графики. Ее основные примитивы - точка (узел), линия (край) и плоскость. Поскольку точка и плоскость представляют собой особые случаи линии, часто говорят о векторной графике как о линейной графике.

Растровая графика - новейшая форма компьютерной графики. Центральный элемент - пиксель. В настоящее время благодаря высокой степени разрешения экранов растрового изображения различают пассивную и интерактивную визуализацию. Распределение растровых точек представляет собой иерархический метод обращения в пространственном хранении данных, при этом область, подлежащая обработки, делится на растровые ячейки одинаковой величины. Обращение дано через индексы строк и столбцов, которые можно организовать как матрицы.

По территориальному охвату различают глобальные или планетарные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные или местные ГИС (lokal GIS).

ГИС различаются предметной областью информационного моделирования , к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т.п.; среди них особое наименование, как особо широко распространенные, получили земельные информационные системы.

Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.

Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (материалов дистанционного зондирования) в единой интегрированной среде.

Полимасштабные или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением.

Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными.

Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает следующие этапы:

Предпроектное исследование (feasibility stady), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС,

Технико-экономическое обоснование, оценка соотношения "затраты/прибыль" (costs/benefits);

Системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработка ГИС (GIS development);

Тестирование на небольшом территориальном фрагменте, или тестовом участке (test area),

Прототипирование или создание опытного образца, прототипа (prototype);

Внедрение ГИС (GIS implementation), эксплуатация и использование.

Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.

Программное ядро ГИС можно разделить на части: инструментальные геоинформационные системы, вьюеры, векторизаторы, средства пространственного моделирования, средства дистанционного зондирования.

Инструментальные Геоинформационные системы обеспечивают ввод геопространственных данных, хранение в структурированных базах данных, реализацию сложных запросов, пространственный анализ, вывод твердых копий.

Вьюеры предназначены для просмотра введенной ранее и структурированной по правам доступа информации, позволяя при этом выполнять информационные запросы из сформированных с помощью инструментальных ГИС баз данных, в том числе выводить картографические данные на твердый носитель.

Векторизаторы растровых картографических изображений предназначены для ввода пространственной информации со сканера, включая полуавтоматические средства преобразования растровых изo6ражений в векторную форму.

Средства пространственного моделирования оперируют с пространственной информацией ориентированной на частные задачи типа моделирования процесса распространения загрязнений, моделирование геологических явлений, анализ рельефа местности.

Средства дистанционного зондирования предназначены для обработки и дешифрования цифровых изображений земной поверхности, полученных с борта самолета и искусственных спутников.

Лучшим продуктом в мире профессиональных ГИС считается Arc/Info for Windows NT.

Из множества программ, которые можно назвать ГИС-обеспечением можно рекомендовать следующие: Map Objects v.1.2; Map Objects Internet Server; Spatial Data Engine v.2.1.1.

ГИС-вьюеры - это программы, выполняющие функции только просмотра и конвертирования различных форматов, используемых для ГИС. Наиболее часто используются два таких продукта: WinGIS v.3.2 (PROGIS); BusinessMap Pro (ESRI).

К настольным ГИС относятся MapInfo Professional (MapInfo); PC ARC/INFO v.3.5.1 (ESRI); ArcView GIS v.3.0a (ESRI); Spatial Analyst (ESRI); Network Analyst (ESRI).

К системам пространственной обработки относятся Surfer v.6.0 (Golden Software, Inc.) и авторские разработки НРЦГИТ.

Геоинформационная система MapInfo была разработана в конце 80-х годов фирмой Mapping Information Systems Corporation (U.S.A.). ГИС MapInfo работает на платформах РС (Windows 3.x/95/98/NT), PowerPC (MacOS), Alpha, RISC (Unix). Файлы данных и программы MapBasic переносимы с платформы на платформу без конвертации.

Пакет MapInfo специально спроектирован для обработки и анализа информации, имеющей адресную или пространственную привязку. Операции, поддерживающие общение с базой данных, настолько просты, что достаточно небольшого опыта работы с любой базой данных, чтобы сразу использовать возможности компьютерной картографии в сфере Вашей деятельности. MapInfo - это картографическая база данных. Встроенный мощный язык запросов SQL MM, благодаря географическому расширению, позволяет организовать выборки с учетом пространственных отношений объектов, таких как удаленность, вложенность, перекрытие, пересечение, площадь и т.п. Запросы к базе данных можно сохранять в виде шаблонов для многократного использования. В MapInfo имеется возможность поиска и нанесения объектов на карту по координатам, адресу или системе индексов.

MapInfo позволяет редактировать и создавать электронные карты. Оцифровка возможна как с помощью дигитайзера (графического планшета), так и по сканированному изображению. MapInfo поддерживает растровые форматы GIF, JPEG, TIFF, PCX, BMP, TGA (Targa), BIL (SPOT- спутниковые фотографии). Универсальный транслятор MapInfo импортирует карты созданные в форматах других геоинформационных и САПР-систем: AutoCAD (DXF, DWG), Intergraph/MicroStation Design (DGN), ESRI Shape файл, AtlasGIS, ARC/INFO Export (E00). Цифровая информация с GPS (навигационных приборов глобального позиционирования) и других электронных приборов вводится в MapInfo без использования дополнительных программ.

В MapInfo можно работать с данными в форматах Excel, Access, xBASE, Lotus 1-2-3 и текстовом формате. Конвертация файлов данных не требуется. К записям в этих файлах добавляются картографические объекты. Данные разных форматов могут использоваться одновременно в одном сеансе работы. Из MapInfo имеется доступ к удаленным базам данных ORACLE, SYBASE, INFORMIX, INGRES, QE Lib, DB2, Microsoft SQL и др.

В MapInfo имеется 5 основных типов окон: Карта, Список, Легенда, График и Отчет. В окне Карта доступны инструменты редактирования и создания картографических объектов, масштабирования, изменения проекций и другие функции работы с картой. Связанная с картографическими объектами информация может быть представлена в виде таблицы в окне Список . В окне График данные из таблиц можно показать в виде графиков и диаграмм различных типов. В окне Легенда отображены условные обозначения объектов на карте и тематических слоях. В окне Отчет предоставляются средства масштабирования, макетирования, а также сохранения шаблонов многолистных карт. Работая с MapInfo, можно формировать и распечатывать отчеты с фрагментами карт, списками, графиками и надписями. При выводе на печать MapInfo использует стандартные драйверы операционной системы.

Тематическая картография является мощным средством анализа и наглядного представления пространственных данных. На тематической карте легко понять связи между различными объектами и увидеть тенденции в развитии различных явлений. В MapInfo можно создавать тематические карты следующих основных типов: картограммы, столбчатые и круговые диаграммы, метод значков, плотность точек, метод качественного фона и непрерывной поверхности-грид. Сочетание тематических слоев и методов буферизации, районирования, слияния и разбиения объектов, пространственной и атрибутивной классификации позволяет создавать синтетические многокомпонентные карты с иерархической структурой легенды.

MapInfo - открытая система. Язык программирования MapBasic позволяет создавать на базе MapInfo собственные ГИС. MapBasic поддерживает обмен данными между процессами (DDE, DLL, RPC,XCMD,XFCN), интеграцию в программу SQL-запросов. Совместное использование MapInfo и среды разработки MapBasic дает возможность каждому создать свою собственную ГИС для решения конкретных прикладных задач.

Локализация пакета MapInfo/MapBasic Professional проведена так, чтобы он работал с русскими данными без проблем, т.е. сортировка и индексация проводится по правилам русского языка. В поставку Русской версии MapInfo включены библиотеки условных знаков, ряд утилит и CAD-функций, которые расширяют возможности пакета, согласно требованиям российского рынка геоинформационных систем.